Skip to main content
Log in

Convergence of Lowest Order Semi-Lagrangian Schemes

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

We consider generalized linear transient advection-diffusion problems for differential forms on a bounded domain in ℝd. We provide comprehensive a priori convergence estimates for their spatiotemporal discretization by means of a first-order in time semi-Lagrangian approach combined with a discontinuous Galerkin method. Under rather weak assumptions on the velocity underlying the advection we establish an asymptotic L 2-estimate of order \(O(\tau+h^{r}+h^{r+1}\tau^{-\frac{1}{2}}+\tau^{\frac{1}{2}})\), where h is the spatial meshwidth, τ denotes the time step, and r is the polynomial degree of the forms used as trial functions. This estimate can be improved considerably in a variety of special settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. When we say that a constant is independent of h, we mean that it may only depend on the shape regularity of the mesh cells, but not on their size.

References

  1. S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand, Princeton, Toronto (1965).

    MATH  Google Scholar 

  2. T. Arbogast, W.H. Wang, Convergence of a fully conservative volume corrected characteristic method for transport problems, SIAM J. Numer. Anal. 48(3), 797–823 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  3. D.N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19(4), 742–760 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  4. D.N. Arnold, F. Brezzi, B. Cockburn, L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39(5), 1749–1779 (2001/02).

    Article  MathSciNet  Google Scholar 

  5. D.N. Arnold, R.S. Falk, R. Winther, Finite element exterior calculus, homological techniques, and applications, Acta Numer. 15, 1–155 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  6. D.N. Arnold, R.S. Falk, R. Winther, Finite element exterior calculus: From Hodge theory to numerical stability, Bull. Amer. Math. Soc. (N.S.) 47(2), 281–354 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Baranger, A. Machmoum, A “natural” norm for the method of characteristics using discontinuous finite elements: 2D and 3D case, Math. Model. Numer. Anal. 33(6), 1223–1240 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Bause, P. Knabner, Uniform error analysis for Lagrange–Galerkin approximations of convection-dominated problems, SIAM J. Numer. Anal. 39(6), 1954–1984 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  9. J.P. Benque, G. Labadie, J. Ronat, A new finite element method for Navier–Stokes equations coupled with a temperature equation, in Finite Element Flow Analysis, ed. by T. Kawai (University of Tokyo Press, Tokyo, 1982), pp. 295–302.

    Google Scholar 

  10. M. Bercovier, O. Pironneau, Characteristics and the finite element method, in Finite Element Flow Analysis, ed. by T. Kawai (University of Tokyo Press, Tokyo, 1982), pp. 295–302.

    Google Scholar 

  11. M. Bercovier, O. Pironneau, V. Sastri, Finite elements and characteristics for some parabolic-hyperbolic problems, Appl. Math. Model. 7(2), 89–96 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Bermejo, Analysis of an algorithm for the Galerkin-characteristic method, Numer. Math. 60(2), 163–194 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Bermejo, L. Saavedra, Modified Lagrange–Galerkin methods of first and second order in time for convection-diffusion problems, Numer. Math. 120, 601–638 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Bermejo, A Galerkin-characteristic algorithm for transport-diffusion equations, SIAM J. Numer. Anal. 32(2), 425–454 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Bermúdez, J. Durany, La méthode des caractéristiques pour les problèmes de convection-diffusion stationnaires, RAIRO Modél. Math. Anal. Numér. 21(1), 7–26 (1987).

    MATH  Google Scholar 

  16. F. Brezzi, L.D. Marini, E. Süli, Discontinuous Galerkin methods for first-order hyperbolic problems, Math. Models Methods Appl. Sci. 14(12), 1893–1903 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Cartan, Differential Forms (Hermann, Paris, 1970).

    MATH  Google Scholar 

  18. M.A. Celia, T.F. Russell, I. Herrera, R.E. Ewing, An Eulerian–Lagrangian localized adjoint method for the advection-diffusion equation, Adv. Water Resour. 13(4), 187–206 (1990).

    Article  Google Scholar 

  19. S.H. Christiansen, R. Winther, Smoothed projections in finite element exterior calculus, Math. Comput. 77(262), 813–829 (2008).

    MathSciNet  MATH  Google Scholar 

  20. C.N. Dawson, T.F. Russell, M.F. Wheeler, Some improved error estimates for the modified method of characteristics, SIAM J. Numer. Anal. 26(6), 1487–1512 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Desbrun, A.N. Hirani, M. Leok, J.E. Marsden, Discrete exterior calculus, Technical report (2005). arXiv:math/0508341.

  22. J. Douglas Jr., T.F. Russell, Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. Numer. Anal. 19(5), 871–885 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Ern, J.L. Guermond, Theory and Practice of Finite Elements (Springer, New York, 2004).

    Book  MATH  Google Scholar 

  24. R.E. Ewing, T.F. Russell, M.F. Wheeler, Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics, Comput. Methods Appl. Mech. Eng. 47(1–2), 73–92 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  25. P. Galán del Sastre, R. Bermejo, Error analysis for hp-FEM semi-Lagrangian second order BDF method for convection-dominated diffusion problems, J. Sci. Comput. 49, 211–237 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  26. J. Guzmán, Local analysis of discontinuous Galerkin methods applied to singularly perturbed problems, J. Numer. Math. 14(1), 41–56 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  27. Y. Hasbani, E. Livne, M. Bercovier, Finite elements and characteristics applied to advection-diffusion equations, Comput. Fluids 11(2), 71–83 (1983).

    Article  MATH  Google Scholar 

  28. I. Herrera, Localized adjoint methods: a new discretization methodology, in Computational Methods in Geosciences (SIAM, Philadelphia, 1992), pp. 66–77.

    Google Scholar 

  29. I. Herrera, R.E. Ewing, M.A. Celia, T.F. Russell, Eulerian–Lagrangian localized adjoint method: the theoretical framework, Numer. Methods Partial Differ. Equ. 9(4), 431–457 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  30. H. Heumann, Eulerian and semi-Lagrangian methods for advection-diffusion of differential forms, Ph.D. thesis, ETH Zürich (2011).

  31. H. Heumann, R. Hiptmair, Eulerian and semi-Lagrangian methods for convection-diffusion for differential forms, Discrete Contin. Dyn. Syst. 29(4), 1471–1495 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  32. H. Heumann, R. Hiptmair, K. Li, J. Xu, Fully discrete semi-Lagrangian methods for advection of differential forms, BIT Numerical Mathematics 1–27. doi:10.1007/s10543-012-0382-4.

  33. H. Heumann, R. Hiptmair, J. Xu, A semi-Lagrangian method for convection of differential forms, Technical Report 2009-09, Seminar for Applied Mathematics, ETH Zürich (2009).

  34. R. Hiptmair, Finite elements in computational electromagnetism, Acta Numer. 11, 237–339 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  35. P. Houston, C. Schwab, E. Süli, Discontinuous hp-finite element methods for advection-diffusion-reaction problems, SIAM J. Numer. Anal. 39(6), 2133–2163 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  36. T.J.R. Hughes, A. Brooks, A multidimensional upwind scheme with no crosswind diffusion, in Finite Element Methods for Convection Dominated Flows. AMD, vol. 34 (Amer. Soc. Mech. Engrs., New York, 1979), pp. 19–35.

    Google Scholar 

  37. K. Jänich, Vector Analysis (Springer, New York, 2001).

    Book  Google Scholar 

  38. C. Johnson, A new approach to algorithms for convection problems which are based on exact transport + projection, Comput. Methods Appl. Mech. Eng. 100(1), 45–62 (1992).

    Article  MATH  Google Scholar 

  39. C. Johnson, J. Pitkäranta, An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation, Math. Comput. 46(173), 1–26 (1986).

    Article  MATH  Google Scholar 

  40. S. Lang, Fundamentals of Differential Geometry (Springer, New York, 1999).

    Book  MATH  Google Scholar 

  41. P. Lasaint, P.A. Raviart, On a finite element method for solving the neutron transport equation, in Proc. Sympos., Math. Res. Center, Univ. of Wisconsin-Madison, vol. 33 (Academic Press, New York, 1974), pp. 89–123.

    Google Scholar 

  42. Y.J. Lee, J. Xu, New formulations, positivity preserving discretizations and stability analysis for non-Newtonian flow models, Comput. Methods Appl. Mech. Eng. 195(9–12), 1180–1206 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  43. B.J. Lucier, Error bounds for the methods of Glimm, Godunov and LeVeque, SIAM J. Numer. Anal. 22(6), 1074–1081 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  44. K.W. Morton, A. Priestley, E. Süli, Stability of the Lagrange–Galerkin method with nonexact integration, RAIRO Modél. Math. Anal. Numér. 22(4), 625–653 (1988).

    MATH  Google Scholar 

  45. K.W. Morton, A. Priestly, On characteristic Galerkin and Lagrange Galerkin methods, in Numerical Analysis (Dundee, 1985), Pitman Res. Notes Math. Ser, vol. 140 (Longman, Harlow, 1986), pp. 157–172.

    Google Scholar 

  46. U. Nävert, A finite element method for convection-diffusion problems, Ph.D. thesis, Chalmers University of Technology, Göteborg (1982).

  47. J.C. Nédélec, Mixed finite elements in R 3, Numer. Math. 35(3), 315–341 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  48. J.C. Nédélec, A new family of mixed finite elements in R 3, Numer. Math. 50(1), 57–81 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  49. J.T. Oden, I. Babuška, C.E. Baumann, A discontinuous hp finite element method for diffusion problems, J. Comput. Phys. 146(2), 491–519 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  50. T.E. Peterson, A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation, SIAM J. Numer. Anal. 28(1), 133–140 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  51. T.N. Phillips, A.J. Williams, A semi-Lagrangian finite volume method for Newtonian contraction flows, SIAM J. Sci. Comput. 22(6), 2152–2177 (2000).

    Article  MathSciNet  Google Scholar 

  52. O. Pironneau, On the transport-diffusion algorithm and its applications to the Navier–Stokes equations, Numer. Math. 38(3), 309–332 (1981).

    Article  MathSciNet  Google Scholar 

  53. O. Pironneau, Finite element characteristic methods requiring no quadrature, J. Sci. Comput. 43(3), 402–415 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  54. A. Priestley, Exact projections and the Lagrange–Galerkin method: A realistic alternative to quadrature, J. Comput. Phys. 112(2), 316–333 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  55. W.H. Reed, T.R. Hill, Triangular mesh methods for the neutron transport equation, Tech. Rep. LA-UR-73-479, Los Alamos National Laboratory, Los Alamos, NM (1973).

  56. R.N. Rieben, D.A. White, B.K. Wallin, J.M. Solberg, An arbitrary Lagrangian–Eulerian discretization of MHD on 3D unstructured grids, J. Comput. Phys. 226(1), 534–570 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  57. B. Rivière, M.F. Wheeler, V. Girault, Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. I, Comput. Geosci. 3(3–4), 337–360 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  58. H.G. Roos, M. Stynes, L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations, 2nd edn., Springer Series in Computational Mathematics, vol. 24 (Springer, Berlin, 2008).

    MATH  Google Scholar 

  59. T.F. Russell, Time stepping along characteristics with incomplete iteration for a Galerkin approximation of miscible displacement in porous media, SIAM J. Numer. Anal. 22(5), 970–1013 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  60. G. Scheja, U. Storch, Lehrbuch der Algebra, vol. 2 (Teubner, Stuttgart, 1988).

    Book  MATH  Google Scholar 

  61. G. Schwarz, Hodge Decomposition—a Method for Solving Boundary Value Problems, Lecture Notes in Mathematics, vol. 1607 (Springer, Berlin, 1995).

    MATH  Google Scholar 

  62. A. Staniforth, J. Côté, Semi-Lagrangian integration schemes for atmospheric models: A review, Mon. Weather Rev. 119, 2206–2223 (1991).

    Article  Google Scholar 

  63. E. Süli, Convergence and nonlinear stability of the Lagrange–Galerkin method for the Navier–Stokes equations, Numer. Math. 53(4), 459–483 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  64. E. Süli, Stability and convergence of the Lagrange–Galerkin method with nonexact integration, in The Mathematics of Finite Elements and Applications, VI (Uxbridge, 1987) (Academic Press, London, 1988), pp. 435–442.

    Google Scholar 

  65. H. Wang, R.E. Ewing, T.F. Russell, Eulerian–Lagrangian localized adjoint methods for convection-diffusion equations and their convergence analysis, IMA J. Numer. Anal. 15(3), 405–459 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  66. H. Wang, K. Wang, Uniform estimates of an Eulerian–Lagrangian method for time-dependent convection-diffusion equations in multiple space dimensions, SIAM J. Numer. Anal. 48(4), 1444–1473 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  67. K. Wang, H. Wang, An optimal-order error estimate to ELLAM schemes for transient advection-diffusion equations on unstructured meshes, SIAM J. Numer. Anal. 48(2), 681–707 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  68. K. Wang, H. Wang, M. Al-Lawatia, H. Rui, A family of characteristic discontinuous Galerkin methods for transient advection-diffusion equations and their optimal-order L 2 error estimates, Commun. Comput. Phys. 6(1), 203–230 (2009).

    Article  MathSciNet  Google Scholar 

  69. J. Xu, Optimal algorithms for discretized partial differential equations, in ICIAM 07–6th International Congress on Industrial and Applied Mathematics (Eur. Math. Soc., Zürich, 2009), pp. 409–444.

    Google Scholar 

  70. G. Zhou, How accurate is the streamline diffusion finite element method? Math. Comput. 66(217), 31–44 (1997).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Heumann.

Additional information

Communicated by Douglas Arnold.

Appendix A: Auxiliary Estimates

Appendix A: Auxiliary Estimates

We exploit the close relationship of the operator \(\operatorname {\mathsf {L}}_{ \boldsymbol {\beta }}+ \operatorname {\mathcal {L}}_{ \boldsymbol {\beta }}\) and the bilinear form \(({X^{\ast}_{-\tau}\omega},{X^{\ast}_{-\tau}\eta} )_{X_{\tau}(\varOmega)}\). In Sect. 3 we use the result of this section for \(\operatorname {\mathsf {L}}_{ \boldsymbol {\beta }}+\operatorname {\mathcal {L}}_{ \boldsymbol {\beta }}\) to prove the well-posedness of (15). Also, the analysis of the auxiliary method of characteristics introduced in Sect. 6 is based on the following results for the bilinear form \(({X^{\ast}_{-\tau}\omega},{X^{\ast}_{-\tau}\eta})_{X_{\tau}(\varOmega)}\).

Proposition A.1

Let βW 1,∞(Ω) and ω,ηL 2 Λ k(Ω), then

  1. (a)

    we have the estimate

    $$ \bigl|{\bigl({X^\ast_{-\tau}\omega},{X^\ast_{-\tau}\eta}\bigr)_{X_\tau (\varOmega)}}\bigr|\leq C(DX_{-\tau}) \|{\omega}\|_{L^{2}\varLambda ^{k}({\varOmega })} \|{\eta}\|_{L^{2}\varLambda ^{k}({\varOmega })}, $$
    (50)

    with C(DX τ )=1+τC(D β) for τ sufficiently small;

  2. (b)

    the operator \(\operatorname {\mathsf {L}}_{ \boldsymbol {\beta }}+ \operatorname {\mathcal {L}}_{ \boldsymbol {\beta }}\) is symmetric:

    $$ \bigl({\omega},{(\operatorname {\mathsf {L}}_{ \boldsymbol {\beta }}+\operatorname {\mathcal {L}}_{ \boldsymbol {\beta }}) \eta}\bigr)_\varOmega= \bigl({(\operatorname {\mathsf {L}}_{ \boldsymbol {\beta }}+\operatorname {\mathcal {L}}_{ \boldsymbol {\beta }}) \omega},{\eta}\bigr)_\varOmega,\quad\omega, \eta\in L^{2}\varLambda ^{k}({\varOmega }). $$
    (51)

    and we have the estimate

    $$ \bigl|{\bigl({\omega},{(\operatorname {\mathsf {L}}_{ \boldsymbol {\beta }}+\operatorname {\mathcal {L}}_{ \boldsymbol {\beta }}) \eta}\bigr)_\varOmega}\bigr| \leq C |{ \boldsymbol {\beta }}|_{ {\boldsymbol {W}}^{{1},{\infty}}({\varOmega })} \|{\omega}\|_{L^{2}\varLambda ^{k}({\varOmega })} \|{\eta}\|_{L^{2}\varLambda ^{k}({\varOmega })}. $$
    (52)

If βW 2,∞(Ω) and ω,ηL 2 Λ k(Ω)

  1. (c)

    we have the expansion

    $$ \bigl({X^\ast_{-\tau}\omega},{X^\ast_{-\tau}\eta}\bigr)_{X_\tau(\varOmega)} = ({\omega},{\eta})_\varOmega- \tau\bigl({\omega },{(\operatorname {\mathsf {L}}_{ \boldsymbol {\beta }}+\operatorname {\mathcal {L}}_{ \boldsymbol {\beta }})\eta}\bigr)_\varOmega+ R( \boldsymbol {\beta },\tau) ({\omega},{\eta})_\varOmega, $$
    (53)

    withR(β,τ)∥≤C(β)τ 2 independent of ω and η.

Proof

(1) We first examine the special case of Ω being a domain in ℝ3.

The results follow directly from the corresponding vector proxy representations from Table 2. While the assertion (b) is obvious in ℝ3, we recall that

$$ \bigl({X^\ast_{-\tau}\omega},{X^\ast_{-\tau}\eta}\bigr)_{X_\tau(\varOmega)}= \int_{\varOmega} \omega\wedge X^{\ast}_{\tau} \star X^\ast_{-\tau }\eta $$

and hence, we find for differential forms ω in ℝ3 with vector correspondences u or u:

which yields the assertion (a). Taylor expansion of \(\omega\wedge X^{\ast}_{\tau} \star X^{\ast}_{-\tau}\omega\) in τ finally proves assertion (c).

(2) General case (see also [32, Lemma 4.1]):

The proof for the general case is very similar, but involves certain technical notation from tensor calculus, if one aims at explicit formulas for the operator \(\operatorname {\mathsf {L}}_{ \boldsymbol {\beta }}+\operatorname {\mathcal {L}}_{ \boldsymbol {\beta }}\) and the constants. By density of \(\operatorname {\varLambda }^{k}({\varOmega })\) in L 2 Λ k(Ω) it is enough to prove the assertions for smooth \(\eta,\omega\in \operatorname {\varLambda }^{k}({\varOmega })\).

(a) By multilinearity we have for orthonormal vector fields e 1,…,e n and σS(j,n), \(\gamma\in \operatorname {\varLambda }^{j}({\varOmega })\) and xΩ [60, p. 610]:

(54)

where the quantities det((DX τ (x)) σ′,σ ) are known as the j-minors of the differential DX τ (x) with respect to e 1,…,e n , i.e., the determinants of those submatrices of DX τ (x) that contain the rows σ′ and columns σ. By the definition of the inner product of differential forms we have

$$ \bigl({X^\ast_{-\tau} \omega},{X^\ast_{-\tau} \eta} \bigr)_{X_\tau(\varOmega)} = \int_{X_\tau(\varOmega)} X^\ast_{-\tau}\omega\wedge \star X^\ast _{-\tau}\eta= \int_{X_\tau(\varOmega)} \bigl({X^\ast_{-\tau}\omega},{X^\ast _{-\tau}\eta}\bigr) \mu. $$

Hence, by the definition of the inner product of alternating forms and (54), we find

$$ \bigl({X^\ast_{-\tau}\omega},{X^\ast_{-\tau}\eta} \bigr)_{X_\tau(\varOmega)}= \bigl({\det(DX_\tau) {\mathbf {M}}_k(DX_{\tau})\omega},{{\mathbf {M}}_k(DX_{\tau })\eta}\bigr)_\varOmega, $$
(55)

with

This proves the assertion.

(b) We consider \(\bar{\eta}\) and \(\bar{\omega}\) to be extensions of η and ω to \(\operatorname {\varLambda }^{k}({ \mathbb {R}^{n}})\) and assume βC (Ω). First, Cartan’s formula (7) and compatibility of exterior product and pullback yield:

$$ \begin{aligned} \bar{\eta}\wedge \star (\operatorname {\mathsf {L}}_{ \boldsymbol {\beta }}+ \operatorname {\mathcal {L}}_{ \boldsymbol {\beta }})\bar{\omega}&=\lim_{\tau\to0}\frac{1}{\tau} \bigl(\bar{\eta}\wedge\bigl(\star X^\ast_{\tau} \bar{\omega}- \star \bar{\omega}\bigr) - \bar{\eta}\wedge\bigl(X^\ast_{\tau} \star \bar{\omega}- \star \bar{\omega}\bigr)\bigr) \\ &= \lim_{\tau\to0}\frac{1}{\tau} \bar{\eta}\wedge\bigl(\star X^\ast_{\tau} \bar{\omega}- X^\ast_{\tau} \star \bar{\omega}\bigr) \\ &= \lim_{\tau\to0} \frac{1}{\tau} \bigl(\bar{\eta}\wedge \star X^\ast_{\tau} \bar{\omega}- X^\ast_\tau\bigl(X^\ast_{-\tau}\bar{\eta}\wedge \star \bar{\omega}\bigr)\bigr) \\ &= \lim_{\tau\to0} \frac{1}{\tau} \bigl(\bigl({\bar{\eta}},{X^\ast_\tau\bar{\omega}}\bigr)\mu- X^\ast_{\tau} \bigl({X^\ast_{-\tau} \bar{\eta}},{\bar{\omega}}\bigr) \mu\bigr). \end{aligned} $$

From the Taylor expansion DX τ (x)=id+τD β(x)+O(τ 2) of DX τ (x) around τ=0 and the Taylor expansion of det( ), \(\det({\mathbf {A}}+\varepsilon {\mathbf {B}})= \det({\mathbf {A}})+\varepsilon \operatorname {tr}(\mathsf {Adj}({\mathbf {A}}){\mathbf {B}})+O(\varepsilon^{2})\) and (54) we infer

$$ \begin{aligned} &\bigl(X_\tau^\ast \gamma\bigr)_x({\mathbf {e}}_{\sigma(1)},\dots,{\mathbf {e}}_{\sigma(j)})\\ &\quad=\sum_{\sigma'\in S(j,n)} \det\bigl( (I_n)_{\sigma',\sigma}\bigr) \gamma_{X_\tau(x)}({\mathbf {e}}_{\sigma'(1)},\ldots, {\mathbf {e}}_{\sigma'(j)}),\\ & \qquad{}+\tau\sum_{\sigma' \in S(j,n)}\operatorname {tr}\bigl( \mathsf {Adj}\bigl( (I_n)_{\sigma',\sigma} \bigr) (D \boldsymbol {\beta }_{x})_{\sigma',\sigma}\bigr) \gamma_{X_\tau(x)}({\mathbf {e}}_{\sigma'(1)},\dots, {\mathbf {e}}_{\sigma'(j)})+O\bigl(\tau^2\bigr), \end{aligned} $$
(56)

with Adj and \(\operatorname {tr}\) the adjugate and trace operator for matrices, and the unit matrix I n ∈ℝn×n. Introducing the abbreviation

(57)

we find:

(58)

This result holds for any extension of ω and η and the assertion follows by density of \(\operatorname {\varLambda }^{k}({\varOmega })\) in L 2 Λ k(Ω), since \({\mathbf {M}}_{k}'(\cdot)\) depends only on the Jacobian of β. Thus we see that βW 1,∞(Ω) is the minimal smoothness assumption for β.

(c) First, we see that:

$$ \begin{aligned} \frac{\partial}{\partial\tau} \bigl({X^\ast_{\tau} \omega},{X^\ast_{\tau}\eta}\bigr)_{X_{-\tau}(\varOmega)|_{\tau=0}} &=\lim_{\tau\to0}\frac{1}{\tau}\bigl(({\omega},{\eta})_\varOmega -\bigl({X^\ast_{-\tau} \omega},{X^\ast_{-\tau}\eta}\bigr)_{X_\tau(\varOmega)} \bigr) \\ &= \lim_{\tau\to 0} \frac{1}{\tau}\bigl(({\omega},{\eta})_\varOmega- \bigl({X^\ast_{-\tau} \omega},{\eta}\bigr)_{X_\tau(\varOmega)} \bigr) \\ &\quad+ \lim_{\tau\to 0}\frac{1}{\tau}\bigl(\bigl({X^\ast_{-\tau}\omega},{\eta} \bigr)_{X^\ast _\tau(\varOmega)} - \bigl({X^\ast_{-\tau} \omega},{X^\ast_{-\tau }\eta}\bigr)_{X_\tau(\varOmega)} \bigr) \\ &= \lim_{\tau\to 0} \frac{1}{\tau}\int_\varOmega\omega\wedge\bigl( \star \eta- X^\ast_\tau \star \eta\bigr)\\ &\quad + \lim_{\tau\to 0} \frac{1}{\tau}\int_\varOmega\omega\wedge X^\ast_\tau \star \bigl( \eta- X^\ast_{-\tau} \eta\bigr)\\ &= ({\omega},{\operatorname {\mathcal {L}}_{ \boldsymbol {\beta }}\eta})_\varOmega+ ({\omega },{\operatorname {\mathsf {L}}_{ \boldsymbol {\beta }}\eta})_\varOmega. \end{aligned} $$

Then the assertion follows by the Taylor expansion of (55). □

While the previous result is important in the treatment of the advection terms, the treatment of the diffusion requires certain multiplicative trace inequalities.

Recall that (12) implies an integration by parts formula for \(\omega\in \operatorname {\varLambda }^{k}({\varOmega })\) and \(\eta\in \operatorname {\varLambda }^{k+1}({\varOmega })\) on a bounded domain Ω:

$$ \int_{\partial\varOmega} \operatorname {tr}\omega\wedge \operatorname {tr}\star \eta= ({\operatorname {\mathsf {d}}\omega},{\eta})_\varOmega- ({\omega},{\operatorname {\mathsf {d}}\eta})_\varOmega. $$

Observe that the right-hand side is not a semidefinite bilinear form. Nevertheless we have a Cauchy–Schwarz type inequality:

Proposition A.2

Let Ω be a bounded domain with outward normal n Ω . Then, we define a seminorm for \(\omega\in \operatorname {\varLambda }^{k}({\varOmega })\) by

$$ |{\omega}|_{\partial\varOmega,\operatorname {tr}}^2:= \int_{\partial \varOmega} \operatorname {tr}\operatorname {\mathsf {i}}_{{\mathbf {n}}_\varOmega} (\omega \wedge \star \omega), $$
(59)

and have

$$ \biggl|\int_{\partial\varOmega} \operatorname {tr}\omega\wedge \operatorname {tr}\star \eta \biggr| \leq |{\omega}|_{\partial\varOmega,\operatorname {tr}} |{\eta }|_{\partial \varOmega,\operatorname {tr}},\quad\omega\in \operatorname {\varLambda }^{k}({\varOmega }),\ \eta\in \operatorname {\varLambda }^{k+1}({\varOmega }), $$
(60)

for \(\omega\in \operatorname {\varLambda }^{k}({\varOmega })\) and \(\eta\in \operatorname {\varLambda }^{k+1}({\varOmega })\).

Proof

According to [61, Prop. 1.2.6] we have:

$$ \operatorname {tr}\omega\wedge \operatorname {tr}\star \eta= (\omega, \operatorname {\mathsf {i}}_{{\mathbf {n}}_\varOmega}\eta) \operatorname {\mathsf {i}}_{{\mathbf {n}}_\varOmega}\mu, $$

where μ is the volume form of Ω. Hence, the assertion follows from the standard Cauchy–Schwarz inequality for the scalar product of alternating k-forms and

$$ (\omega,\omega)\operatorname {\mathsf {i}}_{{\mathbf {n}}_\varOmega} \mu= \operatorname {\mathsf {i}}_{{\mathbf {n}}_\varOmega} (\omega,\omega) \mu= \operatorname {\mathsf {i}}_{{\mathbf {n}}_\varOmega} (\omega \wedge \star \omega), $$

because, certainly, \((\operatorname {\mathsf {i}}_{{\mathbf {n}}_{\varOmega}} \eta,\operatorname {\mathsf {i}}_{{\mathbf {n}}_{\varOmega}} \eta) \leq(\omega, \omega)\). □

The next proposition states a multiplicative trace inequality (cf. [1, Theorem 3.10]) for the seminorm \(|{\cdot}|_{\partial\varOmega,\operatorname {tr}}\) for a convex polygonal domain Ω.

Proposition A.3

Assume that Ω is a convex polygonal domain. Let h Ω be the radius of the smallest n-dimensional ball that contains Ω and ρ Ω the radius of the largest n-dimensional ball that is contained in Ω. Then we have:

$$ |{\omega}|_{\partial\varOmega,\operatorname {tr}}^2 \leq2 \frac{h_\varOmega}{\rho_\varOmega} \|{\omega}\|_{L^{2}\varLambda ^{k}({\varOmega })} {|{\omega}|}_{H^{1}\varLambda ^{k}({{\varOmega }})} + \frac{n}{\rho_\varOmega} \|{\omega}\|_{L^{2}\varLambda ^{k}({\varOmega })}^2. $$
(61)

Proof

Without loss of generality, we suppose that the center \(\bar{x}\) of the largest inscribed ball is the origin of the coordinate system. We start from the following relation:

$$ \int_{\partial\varOmega} \operatorname {tr}\operatorname {\mathsf {i}}_{{\mathbf {x}}} (\omega\wedge \star \omega) = \int_\varOmega \operatorname {\mathsf {d}}\operatorname {\mathsf {i}}_{{\mathbf {x}}} (\omega\wedge \star \omega). $$

On the one hand we have the lower bound:

$$ \int_{\partial\varOmega} \operatorname {tr}\operatorname {\mathsf {i}}_{{\mathbf {x}}} (\omega\wedge \star \omega) \geq\min_{{\mathbf {x}}\in\partial\varOmega}\bigl({\mathbf {x}}\cdot {\mathbf {n}}_\varOmega({\mathbf {x}})\bigr) \int_{\partial\varOmega} \operatorname {tr}\operatorname {\mathsf {i}}_{{\mathbf {n}}_\varOmega} (\omega\wedge \star \omega) = \rho_\varOmega|{\omega}|_{\partial\varOmega, \operatorname {tr}}^2, $$
(62)

because \(\int_{\partial\varOmega} \operatorname {tr}\operatorname {\mathsf {i}}_{{\mathbf {x}}} \mu= \int _{\partial \varOmega} {\mathbf {x}}\cdot {\mathbf {n}}_{\varOmega} \operatorname {\mathsf {i}}_{{\mathbf {n}}_{\varOmega}} \mu\). Moreover,

$$ \begin{aligned} \int_\varOmega \operatorname {\mathsf {d}}\operatorname {\mathsf {i}}_{{\mathbf {x}}} (\omega\wedge \star \omega)=\int_\varOmega \operatorname {\mathsf {L}}_{{\mathbf {x}}} (\omega\wedge \star \omega) = \int_\varOmega(\operatorname {\mathsf {L}}_{{\mathbf {x}}} + \operatorname {\mathcal {L}}_{{\mathbf {x}}}) (\omega\wedge \star \omega) - \int_\varOmega \operatorname {\mathsf {j}}_{{\mathbf {x}}} \operatorname {\delta }(\omega\wedge \star \omega). \end{aligned} $$
(63)

With the Cauchy inequality the second term on the right-hand side is estimated as

$$ \biggl|{\int_\varOmega \operatorname {\mathsf {j}}_{{\mathbf {x}}} \operatorname {\delta }(\omega\wedge \star \omega )}\biggr| \leq2 \sup_{{\mathbf {x}}\in\varOmega} |{{\mathbf {x}}}| \|{\omega}\|_{L^{2}\varLambda ^{k}({\varOmega })} {|{\omega}|}_{H^{1}\varLambda ^{k}({{\varOmega }})}. $$
(64)

Since, further, \((\operatorname {\mathsf {L}}_{{\mathbf {x}}}+\operatorname {\mathcal {L}}_{{\mathbf {x}}}) \mu=(\operatorname {div}{\mathbf {x}}) \mu\) (see (58) and (57)), the lower bound (62) together with (63) and (64) proves assertion (61). □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heumann, H., Hiptmair, R. Convergence of Lowest Order Semi-Lagrangian Schemes. Found Comput Math 13, 187–220 (2013). https://doi.org/10.1007/s10208-012-9139-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-012-9139-3

Mathematics Subject Classification (2000)

Keywords

Navigation