Skip to main content
Log in

Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

Deterministic Galerkin approximations of a class of second order elliptic PDEs with random coefficients on a bounded domain D⊂ℝd are introduced and their convergence rates are estimated. The approximations are based on expansions of the random diffusion coefficients in L 2(D)-orthogonal bases, and on viewing the coefficients of these expansions as random parameters y=y(ω)=(y i (ω)). This yields an equivalent parametric deterministic PDE whose solution u(x,y) is a function of both the space variable xD and the in general countably many parameters y.

We establish new regularity theorems describing the smoothness properties of the solution u as a map from yU=(−1,1) to \(V=H^{1}_{0}(D)\). These results lead to analytic estimates on the V norms of the coefficients (which are functions of x) in a so-called “generalized polynomial chaos” (gpc) expansion of u.

Convergence estimates of approximations of u by best N-term truncated V valued polynomials in the variable yU are established. These estimates are of the form N r, where the rate of convergence r depends only on the decay of the random input expansion. It is shown that r exceeds the benchmark rate 1/2 afforded by Monte Carlo simulations with N “samples” (i.e., deterministic solves) under mild smoothness conditions on the random diffusion coefficients.

A class of fully discrete approximations is obtained by Galerkin approximation from a hierarchic family \(\{V_{l}\}_{l=0}^{\infty}\subset V\) of finite element spaces in D of the coefficients in the N-term truncated gpc expansions of u(x,y). In contrast to previous works, the level l of spatial resolution is adapted to the gpc coefficient. New regularity theorems describing the smoothness properties of the solution u as a map from yU=(−1,1) to a smoothness space WV are established leading to analytic estimates on the W norms of the gpc coefficients and on their space discretization error. The space W coincides with \(H^{2}(D)\cap H^{1}_{0}(D)\) in the case where D is a smooth or convex domain.

Our analysis shows that in realistic settings a convergence rate \(N_{\mathrm{dof}}^{-s}\) in terms of the total number of degrees of freedom N dof can be obtained. Here the rate s is determined by both the best N-term approximation rate r and the approximation order of the space discretization in D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Babuška, R. Tempone, G.E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations, SIAM J. Numer. Anal. 42, 800–825 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  2. I. Babuška, F. Nobile, R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal. 45, 1005–1034 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  3. P.G. Ciarlet, The Finite Element Methods for Elliptic Problems (Elsevier, Amsterdam, 1978).

    Google Scholar 

  4. A. Cohen, Numerical Analysis of Wavelet Methods (Elsevier, Amsterdam, 2003).

    MATH  Google Scholar 

  5. A. Cohen, W. Dahmen, R. DeVore, Adaptive wavelet methods for elliptic operator equations—convergence rates, Math. Comput. 70, 27–75 (2001).

    MATH  MathSciNet  Google Scholar 

  6. A. Cohen, R. DeVore, C. Schwab, Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE’s, Anal. Appl. (2010, to appear).

  7. R. DeVore, Nonlinear approximation, Acta Numer. 7, 51–150 (1998).

    Article  MathSciNet  Google Scholar 

  8. T. Gantumur, H. Harbecht, R. Stevenson, An adaptive wavelet method without coarsening of the iterands, Math. Comput. 76, 615–629 (2007).

    Article  MATH  Google Scholar 

  9. R. Ghanem, P. Spanos, Spectral techniques for stochastic finite elements, Arch. Comput. Methods Eng. 4, 63–100 (1997).

    Article  MathSciNet  Google Scholar 

  10. G.E. Karniadakis, D.B. Xiu, The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput. 24, 619–644 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Kleiber, T.D. Hien, The Stochastic Finite Element Methods (Wiley, New York, 1992).

    Google Scholar 

  12. M. Ledoux, M. Talagrand, Probability in Banachspaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 23 (Verlag, Berlin, 1991).

    Google Scholar 

  13. F. Nobile, R. Tempone, C.G. Webster, A sparse grid stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal. 46, 2309–2345 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  14. F. Nobile, R. Tempone, C.G. Webster, An anisotropic sparse grid stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal. 46, 2411–2442 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  15. G. Rozza, D.B.P. Huynh, A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations and application to transport and continuum mechanics, Arch. Comput. Methods Eng. 15, 229–275 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  16. W. Schoutens, Stochastic Processes and Orthogonal Polynomials. Lecture Notes in Statistics, vol. 146 (Springer, New York, 2000).

    MATH  Google Scholar 

  17. C. Schwab, R. Todor, Karhúnen–Loève approximation of random fields by generalized fast multipole methods, J. Comput. Phys. 217, 100–122 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  18. S.A. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of functions, Dokl. Akad. Nauk SSSR 4, 240–243 (1963).

    Google Scholar 

  19. R. Todor, Robust eigenvalue computation for smoothing operators, SIAM J. Numer. Anal. 44, 865–878 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  20. R. Todor, C. Schwab, Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients, IMA J. Numer. Anal. 45, 232–261 (2007).

    MathSciNet  Google Scholar 

  21. T. von Petersdorff, C. Schwab, Sparse finite element methods for operator equations with stochastic data, Appl. Math. 51, 145–180 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  22. N. Wiener, The homogeneous chaos, Am. J. Math. 60, 897–936 (1938).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Cohen.

Additional information

Communicated by Wolfgang Dahmen.

This research was supported by the Fondation Sciences Mathématiques de Paris; the Office of Naval Research Contracts ONR-N00014-08-1-1113, ONR N00014-09-1-0107; the AFOSR Contract FA95500910500; the NSF Grant DMS-0810869; the Swiss National Science Foundation under Grant No. 200021-120290/1 and European Research Council Project No. 247277.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, A., DeVore, R. & Schwab, C. Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs. Found Comput Math 10, 615–646 (2010). https://doi.org/10.1007/s10208-010-9072-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-010-9072-2

Keywords

Mathematics Subject Classification (2000)

Navigation