1.

E. Candès, Compressive sampling, in *Proceedings of International Congress of Mathematics*, vol. 3, Madrid, Spain, 2006, pp. 1433–1452.

2.

E. Candès, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,

*IEEE Trans. Inf. Theory*
**52**, 489–509 (2006).

CrossRefGoogle Scholar3.

E. Candès, T. Tao, Near-optimal signal recovery from random projections: universal encoding strategies,

*IEEE Trans. Inf. Theory*
**52**, 5406–5425 (2004).

CrossRefGoogle Scholar4.

E.J. Candès, T. Tao, Decoding by linear programming,

*IEEE Trans. Inf. Theory*
**51**, 4203–4215 (2005).

CrossRefGoogle Scholar5.

A. Cohen, W. Dahmen, R. DeVore, Compressed sensing and *k*-term approximation, Manuscript (2007).

6.

7.

D. Donoho, Compressed sensing,

*IEEE Trans. Inf. Theory*
**52**, 1289–1306 (2006).

CrossRefMathSciNetGoogle Scholar8.

D. Donoho, M. Elad, V. Temlyakov, Stable recovery of sparse overcomplete representations in the presence of noise,

*IEEE Trans. Inf. Theory*
**52**, 6–18 (2006).

CrossRefMathSciNetGoogle Scholar9.

D. Donoho, M. Elad, V. Temlyakov, On the Lebesgue type inequalities for greedy approximation,

*J. Approx. Theory*
**147**, 185–195 (2007).

MATHCrossRefMathSciNetGoogle Scholar10.

D. Donoho, P. Stark, Uncertainty principles and signal recovery,

*SIAM J. Appl. Math.*
**49**, 906–931 (1989).

MATHCrossRefMathSciNetGoogle Scholar11.

A. Gilbert, S. Muthukrishnan, M. Strauss, Approximation of functions over redundant dictionaries using coherence, in *The 14th Annual ACM–SIAM Symposium on Discrete Algorithms* (2003).

12.

A. Gilbert, M. Strauss, J. Tropp, R. Vershynin, Algorithmic linear dimension reduction in the L_{1} norm for sparse vectors, submitted. Conference version, in *Algorithmic Linear Dimension Reduction in the L*
_{1}
* Norm for Sparse Vectors*, Allerton, 2006. 44th Annual Allerton Conference on Communication, Control, and Computing.

13.

A. Gilbert, M. Strauss, J. Tropp, R. Vershynin, One sketch for all: fast algorithms for compressed sensing, in *STOC 2007*. 39th ACM Symposium on Theory of Computing, San Diego, 2007, to appear.

14.

Y. Lyubarskii, R. Vershynin, Uncertainty principles and vector quantization, submitted.

15.

S. Mendelson, A. Pajor, N. Tomczak-Jaegermann, Uniform uncertainty principle for Bernoulli and subgaussian ensembles, *Constr. Approx.*, submitted.

16.

H. Rauhut, On the impossibility of uniform recovery using greedy methods, in *Sample Theory Signal Image Process.*, to appear.

17.

M. Rudelson, R. Vershynin, On sparse reconstruction from Fourier and Gaussian measurements, *Commun. Pure Appl. Math.*, to appear. Conference version in *CISS 2006*. 40th Annual Conference on Information Sciences and Systems, Princeton.

18.

D. Spielman, S.-H. Teng, Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time,

*J. ACM*
**51**, 385–463 (2004).

CrossRefMathSciNetGoogle Scholar19.

V. Temlyakov, Nonlinear methods of approximation,

*Found. Comput. Math.*
**3**, 33–107 (2003).

MATHCrossRefMathSciNetGoogle Scholar20.

J.A. Tropp, A.C. Gilbert, Signal recovery from random measurements via orthogonal matching pursuit,

*IEEE Trans. Inf. Theory*
**53**(12), 4655–4666 (2007).

CrossRefMathSciNetGoogle Scholar21.

R. Vershynin, Beyond Hirsch Conjecture: walks on random polytopes and smoothed complexity of the simplex method, submitted. Conference version in *FOCS 2006*. 47th Annual Symposium on Foundations of Computer Science, Berkeley, pp. 133–142.