Skip to main content
Log in

Feature dynamic deep learning approach for DDoS mitigation within the ISP domain

  • Special Issue Paper
  • Published:
International Journal of Information Security Aims and scope Submit manuscript

Abstract

The emergence of the Mirai malware facilitated a DDoS attack vector to surge to almost 1 Tbps in 2016, instigated by less than 150,000 infected IoT devices. With the infection of five new IoT devices per minute, the size of Mirai botnet was enlarged to 2.5 millions devices by the end of 2016. The continuous adaptation of the Mirai malware enables the modern variant to dynamically update its malware scripts on the fly to launch even more advanced and malevolent DDoS attacks, which dramatically escalates the level of difficulty with mitigating DDoS attacks. Many researchers endeavour to develop mitigation systems to keep up with the increasing security threats. Nonetheless, most presented models provide inefficient solutions either by utilising auxiliary servers at the host site, on the cloud or at dedicated data scrubbing centres. Since internet service providers (ISPs) connect the internet with users, the mitigation system should be deployed within the ISP domain to deliver a more efficient solution. Accordingly, we propose a stacked self-organising map, which is a feature dynamic deep learning approach that utilises netflow data collected by the ISP to combat the dynamic nature of novel DDoS attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Wikipedia contributors. Internet of things. Wikipedia, The Free Encyclopedia. August 19, 2018, 10:39 UTC. https://en.wikipedia.org/wiki/Internet_of_things. Accessed 20 Aug 2018

  2. SPAMfighter contributors. 2.5 Million IoT Devices Infected by Malware Mirai. SPAMfighter News. 21-04-2017. https://www.spamfighter.com/News-20867-25-Million-IoT-Devices-Infected-by-Malware-Mirai.htm. Accessed 20 Aug 2018

  3. Kolias, C., Kambourakis, G., Stavrou, A., Voas, J.: DDoS in the IoT: mirai and other botnets. Computer 50(7), 80–84 (2017). https://doi.org/10.1109/MC.2017.201

    Article  Google Scholar 

  4. Incapsula contributors. DDoS Attacks incapsula.com. [Online]. https://www.incapsula.com/ddos/ddos-attacks/. Accessed 20 Aug 2018

  5. Akamai contributors, SOTI Summer 2018 State of the Internet Security. https://www.akamai.com/uk/en/multimedia/documents/state-of-the-internet/soti-summer-2018-web-attack-report.pdf. Accessed 20 Aug 2018

  6. Kerner, S. M.: GitHub Hit By Largest DDoS Attack Ever Recorded at 1.35 Tbps. eWEEK. March 01, 2018. http://www.eweek.com/security/github-hit-by-largest-ddos-attack-ever-recorded-at-1.35-tbps. Accessed 23 Aug 2018

  7. Spring, T.: Mirai Variant Targets Financial Sector with IoT DDoS Attacks. SPAMfighter News. 21-04-2017. https://threatpost.com/mirai-variant-targets-financial-sector-with-iot-ddos-attacks/131056/. Accessed August 23, (2018)

  8. Kumar, S.: Survey of current network intrusion detection techniques, 2017. https://www.cse.wustl.edu/~jain/cse571-07/ftp/ids.pdf. Accessed 16 Mar 2018

  9. Fernando, Z.T., Thaseen, I.S., Kumar, C.A.: Network attacks identifcation using consistency based feature selection and self organizing maps. In: 2014 First International Conference on Networks Soft Computing (ICNSC2014), pp. 162–166, Aug (2014). https://doi.org/10.1109/CNSC.2014.6906666

  10. Idhammad, M., Afdel, K., Belouch, M.: Appl. Intell. (2018). https://doi.org/10.1007/s10489-018-1141-2

    Article  Google Scholar 

  11. Chourasiya, R. et al.: Classification of cyber attack using machine learning technique at microsoft azure cloud. Int. Res. J. Eng. Appl. Sci. (2018)

  12. Sultana, N., Chilamkurti, N., Peng, W., Alhadad, R.: Survey on sdn based network intrusion detection system using machine learning approaches. Peer-to-Peer Netw Appl. (2018). https://doi.org/10.1007/s12083-017-0630-0

    Article  Google Scholar 

  13. Dao, N.-N. et al.: Securing Heterogeneous IoT with Intelligent DDoS Attack Behavior Learning. CoRR arXiv:1711.06041 (2017): n. pag

  14. Yan, Q., Huang, W., Luo, X., Gong, Q., Yu, F.R.: A multi-level DDoS mitigation framework for the industrial internet of things. IEEE Commun. Mag. 56(2), 30–36 (2018). https://doi.org/10.1109/MCOM.2018.1700621

    Article  Google Scholar 

  15. Rodrigues, B., Bocek, T., Lareida, A., Hausheer, D., Rafati, S., Stiller, B.: A blockchain-based architecture for collaborative DDoS mitigation with smart contracts. In: Tuncer, D., Koch, R., emi Badonnel, R., Stiller, R. (eds.) Security of Networks and Services in an All-Connected World, p. 1629. Springer International Publishing, Cham (2017)

    Google Scholar 

  16. Wang, C., Miu, T.T.N., Luo, X., Wang, J.: SkyShield: a sketch-based defense system against application layer DDoS attacks. IEEE Trans. Inform. Forensics Secur. 13(3), 559–573 (2018). https://doi.org/10.1109/TIFS.2017.2758754

    Article  Google Scholar 

  17. Hinze, N., Nawrocki, M., Jonker, M., Dainotti, A., Schmidt, T. C., Wählisch, M.: On the potential of BGP flowspec for DDoS mitigation at two sources: ISP and IXP. In: Proceedings of the ACM SIGCOMM 2018 Conference on Posters and Demos (SIGCOMM ’18). ACM, New York, NY, USA, pp. 57–59. (2018) https://doi.org/10.1145/3234200.3234209

  18. Wang, L.: Jones, Randy: Big data analytics for network intrusion detection: a survey. Int. J. Netw. Commun. (2017). https://doi.org/10.5923/j.ijnc.20170701.03

    Article  Google Scholar 

  19. Fitriani, S., Mandala, S., Murti, M.A.: Review of semi-supervised method for intrusion detection system. In: 2016 Asia Pacic Conference on Multimedia and Broadcasting (APMediaCast), pp. 36–41. (2016). https://doi.org/10.1109/APMediaCast.2016.7878168

  20. Aburomman, A.A., Bin Ibne Reaz, M.: Survey of learning methods in intrusion detection systems. In: 2016 International Conference on Advances in Electrical, Electronic and Systems Engineering (ICAEES), p. 362365. (2016). https://doi.org/10.1109/ICAEES.2016.7888070

  21. Lu, K.: Wu, Dapeng, Fan, Jieyan, Todorovic, Sinisa, Nucci, Antonio: robust and efficient detection of ddos attacks for large-scale internet. Comput. Netw. 51(18), 5036–5056 (2007). https://doi.org/10.1016/j.comnet.2007.08.008

    Article  Google Scholar 

  22. Sachdeva, M., Singh, G., Krishan, K.: Deployment of distributed defense against DDoS attacks in isp domain. Int. J. Comput. Appl. (2011)

  23. Li, C. et al.: Detection and defense of DDoS attack–based on deep learning in OpenFlow-based SDN. Int. J. Commun. Syst. 31: 1074–5351. https://doi.org/10.1002/dac.3497

    Article  Google Scholar 

  24. Review T.: Google’s deep learning machine learns to synthesize real world images. (2015)

  25. Metz C.: Facebook’s Deep Learning guru reveals the future of AI. (2017). https://www.wired.com/2013/12/facebook-yann-lecun-qa/

  26. Li, D.: Recent advances in deep learning at Microsoft: a selected overview. (2017). http://research.microsoft.com/jump/241484/

  27. Kamijo, K., Tanigawa, T.: Stock price pattern recognition- a recurrent neural network approach. In: 1990 IJCNN International Joint Conference on neural networks. IEEE, vol. 1990, pp. 215–221. (1990)

  28. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  29. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural Inform. Process. Syst. 25(2), 1097–1105 (2012)

    Google Scholar 

  30. Hinton, Z.: Autoencoders, minimum description length, and Helmholtz free energy. Adv. Neural Inform. Process. Syst. https://www.cs.toronto.edu/~hinton/absps/cvq.pdf

  31. Ackley, D.H., Hinton, G.E., Sejnowski, T.J.: A learning algorithm for boltzmann machines. Cognit. Sci. 9(1), 147–169 (1985). https://doi.org/10.1016/S0364-0213(85)80012-4

    Article  Google Scholar 

  32. Kohonen, T.: The self-organizing map. Proc. IEEE 78(9), 1464–1480 (1990). https://doi.org/10.1109/5.58325

    Article  Google Scholar 

  33. Meidan, Y. et al.: N-BaloT:Network-based Detection of IoT Botnet Attacks Using Deep Autoencoders. (2018)

  34. Li, C., Wang, J., Ye, X.: Using a recurrent neural network and restricted boltzmann machines for malicious traffic detection. NeuroQuantology (2018). https://doi.org/10.14704/nq.2018.16.5.1391

    Article  Google Scholar 

  35. Pillutla, H., Arjunan, A.: Fuzzy self organizing maps-based DDoS mitigation mechanism for software defined networking in cloud computing. J. Ambient Intell. Humaniz. Comput (2018). https://doi.org/10.1007/s12652-018-0754-y

    Article  Google Scholar 

  36. Nam, T.M., et al.: Self-organizing map-based approaches in DDoS flooding detection using SDN. In: 2018 International Conference on Information Networking (ICOIN), Chiang Mai, (2018), pp. 249–254. https://doi.org/10.1109/ICOIN.2018.8343119. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8343119&isnumber=8343066

  37. Ko, Ili, Chambers, Desmond, Barrett, Enda: A lightweight DDoS attack mitigation system within the ISP domain utilising self-organizing map, vol. 2. (2019). https://doi.org/10.1007/978-3-030-02683-7_14

    Google Scholar 

  38. BoNesi-the DDoS Botnet Simulator. https://github.com/Markus-Go/bonesi

Download references

Acknowledgements

This project was funded by the Irish Research Council under award ID EBPPG/2016/326.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ili Ko.

Ethics declarations

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, I., Chambers, D. & Barrett, E. Feature dynamic deep learning approach for DDoS mitigation within the ISP domain. Int. J. Inf. Secur. 19, 53–70 (2020). https://doi.org/10.1007/s10207-019-00453-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10207-019-00453-y

Keywords

Navigation