Skip to main content
Log in

The link between the Shapley value and the beta factor

  • Published:
Decisions in Economics and Finance Aims and scope Submit manuscript

Abstract

In this article, we provide a link between the Shapley value in cooperative game theory and the capital asset pricing model (CAPM) in finance. In particular, the Shapley value of a suitably defined cooperative game is closely related to the beta factor in the CAPM. The beta factor for any given security may be interpreted as the asset’s fairly allocated share of the market risk or as the asset’s average marginal contribution to the market risk, respectively. Other fairness properties and axioms of the Shapley value may be reinterpreted in this context to attain a deeper understanding of the beta factor and the connotation of systematic risk. Our game theoretic approach further allows for a generalisation of the CAPM with respect to arbitrary risk measures other than variance. Last but not least, we discuss the volatility of an asset’s theoretical fair assessment of risk and of its systematic risk, respectively. This result lends itself to face the challenge of an empirical investigation on real stock markets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acerbi, C., Tasche, D.: On the coherence of expected shortfall. J. Bank. Finance 26, 1487–1503 (2002)

    Article  Google Scholar 

  • Aumann, R.J.: Value of markets with a continuum of traders. Econometrica 43, 611–646 (1975)

    Article  Google Scholar 

  • Aumann, R., Shapley, L.S.: Values of Non-Atomic Games. Princeton University Press, Princeton (1974)

    Google Scholar 

  • Artzner, P., Delbaen, F., Eber, J.M., Heath, D.: Coherent measures of risk. Math. Finance 9, 203–228 (1999)

    Article  Google Scholar 

  • Buch, A., Dorfleitner, G.: Coherent risk measures, coherent capital allocations and the gradient allocation principle. Insur.: Math. Econ. 42, 235–242 (2008)

    Google Scholar 

  • Castro, J., Gomez, D., Tejada, J.: Polynomial calculation of the Shapley value based on sampling. Comput. Oper. Res. 36, 1726–1730 (2009)

    Article  Google Scholar 

  • Csóka, P., Herings, P.J.J., Koczy, L.A.: Stable allocations of risk. Games Econ. Behav. 67(1), 266–276 (2009)

    Article  Google Scholar 

  • Csóka, P., Herings, P.J.J.: Risk allocation under liquidity constraints. J. Bank. Finance 49, 1–9 (2014)

    Article  Google Scholar 

  • Csóka, P., Pinter, M.: On the impossibility of fair risk allocation. B.E. J. Theor. Econ. 16, 143–158 (2016)

    Article  Google Scholar 

  • Denault, M.: Coherent allocation of risk capital. J. Risk 4, 7–21 (2001)

    Article  Google Scholar 

  • Fischer, T.: Risk capital allocation by coherent risk measures based on one-sided moments. Insur.: Math. Econ. 32, 135–146 (2003)

    Google Scholar 

  • Kalkbrener, M.: An axiomatic approach to capital allocation. Math. Finance 15, 425–437 (2005)

    Article  Google Scholar 

  • Kargin, V.: Uncertainty of the Shapley value. Int. Game Theory Rev. 33, 959–976 (2005)

    Google Scholar 

  • Markowitz, H.: Portfolio selection. J. Finance 7, 77–91 (1952)

    Google Scholar 

  • Moretti, S., Patrone, F.: Transversality of the Shapley value. Top 16, 1–41 (2008)

    Article  Google Scholar 

  • Owen, G.: Multilinear extensions of games. Manag. Sci. 18, 64–79 (1972)

    Article  Google Scholar 

  • Pinter, M.: Regression games. Ann. Oper. Res. 186, 263–274 (2011)

    Article  Google Scholar 

  • Samuelson, P.A.: The fundamental approximation theorem of portfolio analysis in terms of means. Var. High. Moments Rev. Econ. Stud. 37, 537–542 (1970)

    Article  Google Scholar 

  • Shapley, L.S.: A value for n-person games. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory of Games, Volume II (Annals of Mathematics Studies 28), pp. 307–317. Princeton University Press, Princeton (1953)

    Google Scholar 

  • Sharpe, W.: A simplified model for portfolio analysis. Manag. Sci. 9, 277–293 (1963)

    Article  Google Scholar 

  • Sharpe, W.: Capital asset prices: a theory of market equilibrium under conditions of risk. J. Finance 19, 425–442 (1964)

    Google Scholar 

  • Young, H.P.: Monotonic solutions of cooperative games. Int. J. Game Theory 14, 65–72 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Michael Ortmann.

Appendix

Appendix

Proof of Lemma 1

Note that the set of symmetric \((n\times n)\)-matrices is a linear vector space. A basis is given by the set of symmetric basis matrices \(E_{ij} \) having coefficients

$$\begin{aligned} e_{kl} =\left\{ {\begin{array}{ll} 1 &{} \hbox {if }\{k,l\}=\{i,j\} \\ 0 &{} \hbox {otherwise} \\ \end{array}} \right. . \end{aligned}$$

These matrices are obviously linear independent. Note that the number of such linear independent matrices is \(\left( {\begin{array}{l} n \\ 2 \\ \end{array}} \right) +n=\frac{n(n+1)}{2}\) . It is equal to the dimension of the vector space of symmetric \((n\times n)\) matrices. By means of an illustration, for \(n=3\) said basis is given by

$$\begin{aligned}&\left\{ E_{11} =\left( {{\begin{array}{c@{\quad }c@{\quad }c} 1&{} 0&{} 0 \\ 0&{} 0&{} 0 \\ 0&{} 0&{} 0 \\ \end{array} }} \right) ;E_{12} =\left( {{\begin{array}{c@{\quad }c@{\quad }c} 0&{} 1&{} 0 \\ 1&{} 0&{} 0 \\ 0&{} 0&{} 0 \\ \end{array} }} \right) ;E_{13} =\left( {{\begin{array}{c@{\quad }c@{\quad }c} 0&{} 0&{} 1 \\ 0&{} 0&{} 0 \\ 1&{} 0&{} 0 \\ \end{array} }} \right) ; \right. \\&\quad \left. E_{22} =\left( {{\begin{array}{c@{\quad }c@{\quad }c} 0&{} 0&{} 0 \\ 0&{} 1&{} 0 \\ 0&{} 0&{} 0 \\ \end{array} }} \right) ;E_{23} =\left( {{\begin{array}{c@{\quad }c@{\quad }c} 0&{} 0&{} 0 \\ 0&{} 0&{} 1 \\ 0&{} 1&{} 0 \\ \end{array} }} \right) ;E_{33} =\left( {{\begin{array}{c@{\quad }c@{\quad }c} 0&{} 0&{} 0 \\ 0&{} 0&{} 0 \\ 0&{} 0&{} 1 \\ \end{array} }} \right) \right\} . \end{aligned}$$

For a fixed market portfolio M, the set of capital market games \(\Gamma =\left( {M,v_A } \right) \) is a linear vector space, too, if we apply point-by-point addition and scalar multiplication of characteristic functions. Note that the basis games \((M,v_{E_{ij}})\) are exactly the unanimity games with at most 2 relevant players. By means of an illustration for \(n=3\), we see that \(v_{E_{12} } \left( {\{1,3\}} \right) =v_{E_{12} } \left( {\{2,3\}} \right) =v_{E_{12} } \left( {\{1\}} \right) =v_{E_{12} } \left( {\{2\}} \right) =v_{E_{12} } \left( {\{3\}} \right) =v_{E_{12} } \left( \varnothing \right) =0\) and \(v_{E_{12} } \left( {\{1,2,3\}} \right) =v_{E_{12} } \left( {\{1,2\}} \right) =2\). We then easily deduce that \(\Phi _1 (M,v_{E_{12} } )=\Phi _2 (M,v_{E_{12} } )=1\) and \(\Phi _3 (M,v_{E_{12}})=0\).

In general, we observe that for any basis game, it holds true that

$$\begin{aligned} \Phi _i (M,v_{E_{ij} } )= & {} 1=\sum _{k\in M} {e_{ik} } \\ \Phi _j (M,v_{E_{ij} } )= & {} 1=\sum _{k\in M} {e_{kj} } \\ \Phi _k (M,v_{E_{ij} } )= & {} 0\hbox { for }k\ne i,j. \end{aligned}$$

Now, for any given symmetric matrix \(A=(a_{ij} )\), the linear combination is known. It follows that the characteristic function is given by . By linearity of the Shapley value, it is true that

$$\begin{aligned} \Phi _k (M,v_A )= & {} \sum _{i\in M} {\mathop {\mathop {\sum \limits _{j\in M}}\limits _{j\ge i}}} {a_{ij} \Phi _k (M,v_{E_{ij} } )} \\= & {} \sum _{i\in M} {\mathop {\mathop {\sum \limits _{j\in M}}\limits _{j\ge i}}} {a_{ij} (\delta _{ik} +\delta _{kj} -\delta _{ij} )} \\= & {} {\mathop {\mathop {\sum \limits _{i\in M}}\limits _{i=k}}} {\mathop {\mathop {\sum \limits _{j\in M}}\limits _{j\ge i}}} {a_{kj} } +\sum _{i\in M} {\mathop {\mathop {\mathop {\sum \limits _{j\in M}}\limits _{j\ge i}}\limits _{j=k}}} {a_{ik} } -\sum _{i\in M} {\mathop {\mathop {\mathop {\sum \limits _{j\in M}}\limits _{j\ge i}}\limits _{j=i}}}{a_{ii}} \\= & {} {\mathop {\mathop {\sum \limits _{j\in M}}\limits _{j\ge k}}} {a_{kj} } + {\mathop {\mathop {\sum \limits _{i\in M}}\limits _{i\le k}}} {a_{ik}} -\sum \limits _{i\in M} {a_{ii} } \\= & {} {\mathop {\mathop {\sum \limits _{j\in M}}\limits _{j\ge k}}} {a_{kj} } + {\mathop {\mathop {\sum \limits _{j\in M}}\limits _{j\le k}}} {a_{kj} } -\sum _{i\in M} {a_{ii} } \\= & {} \sum _{j\in M} {a_{kj} } \\ \end{aligned}$$

where we have used the Kronecker delta: \(\delta _{ik} =1\) for \(i=k\) and \(\delta _{ik} =0\) otherwise. \(\square \)

Proof of Lemma 2

The starting point for the computation of the volatility is its definition as per Eq. (9):

$$\begin{aligned} \sigma _k^2 (\Gamma )= {\mathop {\mathop {\sum \limits _{S\subseteq M}}\limits _{k\in S}}} {p_S } \cdot \left( {v_A (S)-v_A \left( {S\backslash \{k\}} \right) } \right) ^{2}-\left( {\Phi _k (\Gamma _A )} \right) ^{2} \end{aligned}$$

First we note that

$$\begin{aligned} \left( {\Phi _k (\Gamma _A )} \right) ^{2}= & {} \left( {\sum _{j\in M} {a_{kj} } } \right) ^{2}=\left( {a_{kk} +\sum _{j\in M\backslash \{k\}} {a_{kj} } } \right) ^{2} \\= & {} a_{kk}^2 +2a_{kk} \cdot \sum _{j\in M\backslash \{k\}} {a_{kj} } +\left( {\sum _{j\in M\backslash \{k\}} {a_{kj} } } \right) ^{2}. \end{aligned}$$

In addition, it holds true for any marginal difference with \(S\subseteq M,i\in S\) that

$$\begin{aligned} v_A (S)-v_A \left( {S\backslash \{k\}} \right)= & {} \sum _{i,j\in S} {a_{ij} } -\sum _{i,j\in S\backslash \{k\}} {a_{ij} } \\= & {} a_{kk} +\sum _{j\in S\backslash \{k\}} {a_{kj} } +\sum _{i\in S\backslash \{k\}} {a_{ik} } +\sum _{i,j\in S\backslash \{k\}} {a_{ij} } -\sum _{i,j\in S\backslash \{k\}} {a_{ij} } \\= & {} a_{kk} +2\sum _{i\in S\backslash \{k\}} {a_{ik} } . \end{aligned}$$

It follows that

$$\begin{aligned} \left( {v_A (S)-v_A \left( {S\backslash \{k\}} \right) } \right) ^{2}= & {} \left( {a_{kk} +2\sum _{i\in S\backslash \{k\}} {a_{ik} }} \right) ^{2} \\= & {} a_{kk}^2 +4a_{kk} \cdot \sum _{i\in S\backslash \{k\}} {a_{ik} } +4\left( {\sum _{i\in S\backslash \{k\}} {a_{ik} } } \right) ^{2} . \end{aligned}$$

Using the abbreviations \(|S|=s\) and \(|M|=n\), we note that

$$\begin{aligned} {\mathop {\mathop {\sum \limits _{S\subseteq M}}\limits _{i\in S}}} {p_S } a_{kk}^2= & {} a_{kk}^2 {\mathop {\mathop {\sum \limits _{S\subseteq M}}\limits _{i\in S}}} {\frac{\left( {s-1} \right) ! \, \cdot \, \left( {n-s} \right) !}{n!}} \\= & {} a_{kk}^2 \sum _{s=1}^n {\left( {\begin{array}{l} n-1 \\ s-1 \\ \end{array}} \right) \frac{\left( {s-1} \right) ! \, \cdot \, \left( {n-s} \right) !}{n!}} \\= & {} a_{kk}^2 \sum _{s=1}^n {\frac{(n-1)!}{\left( {n-1-(s-1)} \right) ! \, \cdot \, \left( {s-1} \right) !}\cdot \frac{\left( {s-1} \right) ! \, \cdot \, \left( {n-s} \right) !}{n!}} \\= & {} a_{kk}^2 \sum _{s=1}^n {\frac{1}{n}=a_{kk}^2 } . \end{aligned}$$

Likewise, it holds true that

$$\begin{aligned} {\mathop {\mathop {\sum \limits _{S\subseteq M}}\limits _{i\in S}}} {p_S 4a_{kk} \sum _{i\in S\backslash \{k\}} {a_{ik} } }= & {} 4a_{kk} {\mathop {\mathop {\sum \limits _{S\subseteq M}}\limits _{i\in S}}} {\frac{\left( {s-1} \right) ! \, \cdot \, \left( {n-s} \right) !}{n!}} \, \sum _{i\in S\backslash \{k\}} {a_{ik} } \\= & {} 4a_{kk} \sum _{s=2}^n {\frac{(s-1)! \, \cdot \, (n-s)!}{n!}} \sum \limits _{\begin{array}{c} i=1 \\ i\ne k \end{array}}^n {\left( {\begin{array}{l} n-2 \\ s-2 \\ \end{array}} \right) a_{ik} } \\= & {} 4a_{kk} \sum _{s=2}^n {\frac{(s-1)}{n(n-1)}} \sum \limits _{\begin{array}{c} i=1\\ i\ne k \end{array}}^{n} {a_{ik} } \\= & {} 4a_{kk} \frac{1}{n(n-1)}\cdot \frac{(n-1)n}{2} \sum \limits _{\begin{array}{c} i=1\\ i\ne k \end{array}}^{n} {a_{ik} } \\= & {} 2a_{kk} \sum _{i\in M\backslash \{k\}} {a_{ik} } . \end{aligned}$$

In addition, we see that

$$\begin{aligned}&{\mathop {\mathop {\sum \limits _{S\subseteq M}}\limits _{k\in S}}} {p_S } 4\left( {\sum _{i\in S\backslash \{k\}} {a_{ik} } } \right) ^{2} \\&\quad =4 {\mathop {\mathop {\sum \limits _{S\subseteq M}}\limits _{k\in S}}} {\frac{\left( {|S|-1} \right) ! \, \cdot \, \left( {|M|-|S|} \right) !}{|M|!}} \left( {\sum _{i\in S\backslash \{k\}} {a_{ik} } } \right) ^{2} \\&\quad =4 {\mathop {\mathop {\sum \limits _{S\subseteq M}}\limits _{k\in S}}} {\frac{\left( {|S|-1} \right) ! \, \cdot \, \left( {|M|-|S|} \right) !}{|M|!}} \left( {\sum _{i\in S\backslash \{k\}} {a_{ik}^2 } + {\mathop {\mathop {\sum \limits _{i,j\in S\backslash \{k\}}}\limits _{i\ne j}}} {a_{ik} a_{jk} } } \right) \\&\quad =4\sum _{s=2}^n {\frac{(s-1)! \, \cdot \, (n-s)!}{n!} \sum \limits _{\begin{array}{c} i=1\\ i\ne k \end{array}}^{n} {\left( {\begin{array}{l} n-2 \\ s-2 \\ \end{array}} \right) a_{ik}^2 } } \\&\qquad +8\sum _{s=3}^n {\frac{(s-1)! \, \cdot \, (n-s)!}{n!} \sum \limits _{\begin{array}{c} i=1\\ i\ne k \end{array}}^{n} \sum \limits _{\begin{array}{c} j=1\\ j\ne i,k \end{array}}^{n} {\frac{1}{2}\left( {\begin{array}{l} n-3 \\ s-3 \\ \end{array}} \right) a_{ik} a_{jk} } } \\&\quad =4\sum _{s=2}^n {\frac{(s-1)}{n(n-1)} \sum \limits _{\begin{array}{c} i=1\\ i\ne k \end{array}}^{n} {a_{ik}^2 }} +4\sum _{s=3}^n{\frac{(s-1)(s-2)}{n(n-1)(n-2)} \sum \limits _{\begin{array}{c} i=1\\ i\ne k \end{array}}^{n} \sum \limits _{\begin{array}{c} j=1\\ j\ne i,k \end{array}}^{n} {a_{ik} a_{jk}}} \\&\quad =2 \sum \limits _{\begin{array}{c} i=1\\ i\ne k \end{array}}^{n} {a_{ik}^2 } +4\sum _{s=3}^n {\frac{s^{2}-3s+2}{n(n-1)(n-2)} \sum \limits _{\begin{array}{c} i=1 \\ i\ne k \end{array}}^{n} \sum \limits _{\begin{array}{c} j=1\\ j\ne i,k \end{array}}^{n} {a_{ik} a_{jk} } } \\&\quad =2 \sum \limits _{\begin{array}{c} i=1\\ i\ne k \end{array}}^{n} {a_{ik}^2 } +\frac{4}{n(n-1)(n-2)} \\&\qquad \quad \cdot \left( {\frac{n(n+1)(2n+1)}{6}-5-3\frac{n(n+1)}{2}+9+2(n-2)} \right) \sum \limits _{\begin{array}{c} i=1\\ i\ne k \end{array}}^{n} \sum \limits _{\begin{array}{c} j=1\\ j\ne i,k \end{array}}^{n} {a_{ik} a_{jk} } \\&\quad =2 \sum \limits _{\begin{array}{c} i=1\\ i\ne k \end{array}}^{n} {a_{ik}^2 } +\frac{4}{n(n-1)(n-2)}\cdot \frac{n(n+1)(2n-8)+12n}{6} \sum \limits _{\begin{array}{c} i=1\\ i\ne k \end{array}}^{n} \sum \limits _{\begin{array}{c} j=1\\ j\ne i,k \end{array}}^{n} {a_{ik} a_{jk} } \\&\quad =2 {\mathop {\mathop {\sum \limits _{i\in M}}\limits _{i\ne k}}} {a_{ik}^2 } +\frac{(2n+2)(2n-8)+24}{3(n-1)(n-2)} {\mathop {\mathop {\sum \limits _{i\in M}}\limits _{i\ne k}}} {\mathop {\mathop {\sum \limits _{j\in M}}\limits _{j\ne i,k}}} {a_{ik} a_{jk}}. \end{aligned}$$

Putting it all together, we find that

$$\begin{aligned} \sigma _i^2 (\Gamma )= & {} a_{kk}^2 +2a_{kk} \cdot \sum _{i\in M\backslash \{k\}} {a_{ik} } +2\sum _{i\in M\backslash \{k\}} {a_{ik}^2 } \\&+\frac{(2n+2)(2n-8)+24}{3(n-1)(n-2)}\sum _{i\in M\backslash \{k\}} {\sum _{j\in M\backslash \{i,k\}} {a_{ik} a_{jk}}}\\&-a_{kk}^2 -2a_{kk} \cdot \sum _{j\in M\backslash \{k\}} {a_{kj} } -\left( {\sum _{j\in M\backslash \{k\}} {a_{kj} } } \right) ^{2} \\= & {} 2\sum _{i\in M\backslash \{k\}} {a_{ik}^2 } +\frac{4n^{2}-12n+8}{3n^{2}-9n+6}\sum _{i\in M\backslash \{k\}} {\sum _{j\in M\backslash \{i,k\}} {a_{ik} a_{jk} } } \\&-\left( {\sum _{i\in M\backslash \{k\}} {a_{ik}^2 } +\sum _{i\in M\backslash \{k\}} {\sum _{j\in M\backslash \{i,k\}} {a_{ik} a_{jk} } } } \right) \\= & {} \sum _{i\in M\backslash \{k\}} {a_{ik}^2 } +\frac{n^{2}-3n+2}{3n^{2}-9n+6}\sum _{i\in M\backslash \{k\}} {\sum _{j\in M\backslash \{i,k\}} {a_{ik} a_{jk} } } \\= & {} \sum _{i\in M\backslash \{k\}} {a_{ik}^2 } +\frac{1}{3}\sum _{i\in M\backslash \{k\}} {\sum _{j\in M\backslash \{i,k\}} {a_{ik} a_{jk}}}. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortmann, K.M. The link between the Shapley value and the beta factor. Decisions Econ Finan 39, 311–325 (2016). https://doi.org/10.1007/s10203-016-0178-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10203-016-0178-0

Keywords

JEL Classification

Navigation