Skip to main content

Advertisement

Log in

Biodiversity patterns of nutrient-rich fish ponds and implications for conservation

  • Special Feature
  • Freshwater biodiversity in human-dominated landscapes
  • Published:
Limnology Aims and scope Submit manuscript

Abstract

Nutrient-rich water bodies are usually expected to host low species richness at the local scale (water body). Nevertheless, they can support a diverse and sometimes unique biodiversity when diversity is considered at a regional scale. This discrepancy between the two scales is well documented for natural water bodies, but little is known about biodiversity of artificial water bodies, like fish ponds. We hypothesise that nutrient-rich water bodies can collectively host high species richness at the regional scale. Thus, these are important ecosystems for the regional conservation of biodiversity. We investigated 84 fish ponds in the Dombes region, France, with five taxonomic groups: macrophytes, phytoplankton, macroinvertebrates, dragonflies, and amphibians. Species richness patterns were determined for α- (single pond), β- (between ponds), and γ- (regional pond network) levels. For most studied species groups, richness per fish pond and at the regional level proved to be relatively high in comparison with natural ponds in other landscapes. Contribution of α-diversity to regional diversity was highest for dragonflies with 41 %, and lowest for amphibians and macrophytes with 16 and 18 %, respectively. For macroinvertebrate families and phytoplankton genera it was intermediate. Contribution of β-diversity to regional diversity was similar for all species groups with 22–25 %. Furthermore, some ponds hosted a large number of less frequent species and some endangered species, indicating that the conservation of biodiversity of fish ponds must be established at a regional scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akasaka M, Takamura N (2012) Hydrologic connection between ponds positively affects macrophyte α and γ diversity but negatively affects β diversity. Ecology 93:967–973

    Article  PubMed  Google Scholar 

  • Arthaud F, Mousset M, Vallod D, Robin J, Wezel A, Bornette G (2012a) Effect of light stress from phytoplankton on the relationship between aquatic vegetation and the propagule bank in shallow lakes. Freshw Biol 57:666–675

    Article  Google Scholar 

  • Arthaud F, Vallod D, Robin J, Bornette G (2012b) Eutrophication and drought disturbance shape functional diversity and life-history traits of aquatic plants in shallow lakes. Aquat Sci 74(3):471–481

    Article  Google Scholar 

  • Arthaud F, Vallod D, Wezel A, Robin J, Bornette G (2013) Short-term succession of aquatic plant species richness along ecosystem productivity and dispersal gradients in shallow lakes. J Veg Sci 24(1):148–156

    Article  Google Scholar 

  • Biggs J, Williams P, Whitfield M, Nicolet P, Weatherby A (2005) 15 years of pond assessment in Britain: result and lessons learned from the work of pond conservation. Aquat Conserv 15:693–714

    Article  Google Scholar 

  • Bouvy M, Ba N, Ka S, Sane S, Pagano M, Arfi R (2006) Phytoplankton community structure and species assemblage succession in a shallow tropical lake (Lake Guiers, Senegal). Aquat Microb Ecol 45:147–161

    Google Scholar 

  • Brönmark C, Hansson LA (2002) Environmental issues in lakes and ponds: current state and perspectives. Environ Conserv 29:290–307

    Article  Google Scholar 

  • Broyer J, Calenge C (2010) Influence of fish-farming management on duck breeding in French fish pond systems. Hydrobiologia 637:173–185

    Article  Google Scholar 

  • Broyer J, Curtet L (2012) Biodiversity and fish farming intensification in French fishpond systems. Hydrobiologia 694:205–218

    Article  Google Scholar 

  • Carson WP, Barett GW (1988) Succession in old-field communities: effects of contrasting types of nutrient enrichment. Ecology 69:984–994

    Article  Google Scholar 

  • Chambers PA, Kalff J (1987) Light and nutrients in the control of aquatic plant community structure. I. In situ experiments. J Ecol 75:611–619

    Article  Google Scholar 

  • Chase JM, Leibold MA (2002) Spatial scale dictates the productivity-biodiversity relationship. Nature 416:427–430

    Article  CAS  PubMed  Google Scholar 

  • Chovanec A, Waringer J (2001) Ecological integrity of river-floodplain systems-assessment by dragonfly surveys (Insecta: Odonata). Regul Rivers Res Manag 17:493–507

    Article  Google Scholar 

  • Colwell RK (2009) EstimateS: statistical estimation of species richness and shared species samples. http://priede.bf.lu.lv/ftp/pub/GIS/datu_analiize/EstimateS/EstimateSUsersGuide.htm. Accessed Nov 2012

  • Davies B, Biggs J, Williams P, Whitfield M, Nicolet P, Sear D, Bray S, Maund S (2008) Comparative biodiversity of aquatic habitats in the European agricultural landscape. Agric Ecosyst Environ 125(1–4):1–8

    Article  Google Scholar 

  • Dodson SI, Arnott SE, Cottingham KL (2000) The relationship in lake communities between primary productivity and species richness. Ecology 81:2662–2679

    Article  Google Scholar 

  • Edvarsen A, Okland RH (2006) Variation in plant species richness in and adjacent to 64 ponds in SE Norwegian agricultural landscapes. Aquat Bot 85:79–91

    Article  Google Scholar 

  • Gómez-Rodríguez C, Díaz-Paniagua C, Bustamante J, Portheault A, Florencio M (2010) Inter-annual variability in amphibian assemblages: implications for diversity assessment and conservation. Aquat Conserv Mar Freshw Ecosyst 20:668–677

    Article  Google Scholar 

  • Grover JP, Chrzanowski TH (2005) Seasonal dynamics of phytoplankton in two warm temperate reservoirs. J Plankton Res 27:1–17

    Article  Google Scholar 

  • Hambright KD, Zohary T (2000) Phytoplankton species diversity control through competitive exclusion and physical disturbances. Limnol Oceanogr 45:110–122

    Article  Google Scholar 

  • Huston MA (1994) Biological diversity: the coexistence of species on changing landscapes. Cambridge University Press, England

    Google Scholar 

  • Indermuehle N, Angélibert S, Rosset V, Oertli B (2010) The pond biodiversity index “IBEM”: a new tool for the rapid assessment of biodiversity in ponds from Switzerland. Part 2. Method description and examples of application. Limnetica 29:105–120

    Google Scholar 

  • Interlandi SJ, Kilham SS (2001) Limiting resources and the regulation of diversity in phytoplankton communities. Ecology 82(5):1270–1282

    Google Scholar 

  • Jeppesen E, Lauridsen TL, Mitchell SF, Christoffersen K, Burns CW (2000) Trophic structure in the pelagial of 25 shallow New Zealand lakes: changes along nutrient and fish gradients. J Plankton Res 22:951–968

    Article  Google Scholar 

  • Jost L (2007) Partitioning diversity into independent alpha and beta components. Ecology 88:2427–2439

    Article  PubMed  Google Scholar 

  • Kloskowski J (2010) Fish farms as amphibian habitats: factors affecting amphibian species richness and community structure at carp ponds in Poland. Environ Conserv 37(2):187–194

    Article  Google Scholar 

  • Kloskowski J (2011) Differential effects of age-structured common carp (Cyprinus carpio) stocks on pond invertebrate communities: implications for recreational and wildlife use of farm ponds. Aquac Int 19(6):1151–1164

    Article  Google Scholar 

  • Knutson MG, Richardson WB, Reineke DM, Gray BR, Parmelee JR, Weick SW (2004) Agricultural ponds support amphibian populations. Ecol Appl 14(3):669–684

    Article  Google Scholar 

  • Koleff P, Gaston KJ, Lennon JK (2003) Measuring beta diversity for presence-absence data. J Anim Ecol 72:367–382

    Article  Google Scholar 

  • Kunii H (1991) Aquatic macrophyte composition in relation to environmental factors of irrigation ponds around Lake Shinji, Shimane, Japan. Vegetatio 97:137–148

    Article  Google Scholar 

  • Lande R (1996) Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos 76:5–13

    Article  Google Scholar 

  • Le Roux X, Barbault R, Baudry J, Burel F, Doussan I, Garnier E, Herzog F, Lavorel S, Lifran R, Roger-Estrade J, Sarthou JP, Trommetter M (eds) (2008) Agriculture and biodiversity: benefiting from synergies. Multidisciplinary Scientific Assessment, Synthesis Report, INRA (France). http://inra.dam.front.en.pad.brainsonic.com/ressources/afile/234090-93eed-resource-expert-report-on-agriculture-and-biodiversity-summary.html. Accessed July 2013

  • Le Viol I, Chiron F, Julliard R, Kerbiriou C (2012) More amphibians than expected in highway stormwater ponds. Ecol Eng 47:146–154

    Article  Google Scholar 

  • Leclerc D, Angélibert S, Rosset V, Oertli B (2010) Les Libellules (Odonata) des étangs piscicoles de la Dombes. Martinia 26(3–4):98–108

    Google Scholar 

  • MacArthur R, Recher H, Cody M (1966) On the relation between habitat selection and species diversity. Am Nat 100:319–332

    Article  Google Scholar 

  • McNeely JA, Scherr SJ (2003) Ecoagriculture. Strategies to feed the world and save biodiversity. Island Press, Washington, DC

    Google Scholar 

  • Menetrey N, Sager L, Oertli B, Lachavanne JB (2005) Looking for metrics to assess the trophic state of ponds. Macroinvertebrates and amphibians. Aquat Conserv Mar Freshw Ecosyst 15:653–664

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: biodiversity synthesis. World Resource Institute, Washington, DC

    Google Scholar 

  • Mittelbach GG, Steiner CF, Scheiner SM, Gross KL, Reynolds HL, Waide RB, Willig MR, Dodson SI, Gough L (2001) What is the observed relationship between species richness and productivity? Ecology 82(9):2381–2396

    Article  Google Scholar 

  • Oberle M (2010) Schützt die Karpfenteichwirtschaft in Naturschuz- und Vogelschutzgebieten! Fischer & Teichwirt 2(2010):55–58

    Google Scholar 

  • Odum E, Barret GW (2005) Fundamentals of ecology. Thomson, Brooks/Cole, Belmont

    Google Scholar 

  • Oertli B (1995) Odonates de la vallée de la Saône. Martinia 11(2):35–42

    Google Scholar 

  • Oertli B, Auderset Joye D, Castella E, Juge R, Cambin D, Lachavanne J-B (2000) Diversité biologique et typologie écologique des E′ étangs et petits lacs de Suisse. OFEFP, University of Geneva, Geneva

    Google Scholar 

  • Oertli B, Auderset Joye D, Castella E, Juge R, Cambin D, Lachavanne J-B (2002) Does size matter? The relationship between pond area and biodiversity. Biol Conserv 104:59–70

    Article  Google Scholar 

  • Oertli B, AudersetJoye D, Castella E, Juge R, Lehmann A, Lachavanne J-B (2005) PLOCH: a standardised method for sampling and assessing the biodiversity in ponds. Aquat Conserv Mar Freshw Ecosyst 15:665–679

    Article  Google Scholar 

  • Plăiaşu R, Băncilă R, Samoilă C, Hartel T, Cogălniceanu D (2012) Waterbody availability and use by amphibian communities in a rural landscape. Herpetol J 22:13–21

    Google Scholar 

  • Pobel D, Robin J, Humbert JF (2011) Influence of sampling strategies on the monitoring of cyanobacteria in shallow lakes: lessons from a case study in France. Water Res 45:1005–1014

    Article  CAS  PubMed  Google Scholar 

  • Prompt E, Guillerme N, Vallod D, Robin J, Wezel A, Bornette G, Marailhac D (2011) Les étangs piscicoles, un équilibre dynamique. Les cahiers techniques, Conservatoire Rhone-Alpes des Espaces Naturels, France

  • Robin J, Wezel A, Bornette G, Oertli B, Arthaud F, Pobel D, Rosset V, Angélibert S, Vallod D (2013) Biodiversity in eutrophicated shallow lakes: determination of tipping points and tools for monitoring. Hydrobiologia. doi:10.1007/s10750-013-1678-3

  • Rosset V, Angélibert S, Arthaud F, Bornette G, Robin J, Wezel A, Vallod D, Oertli B (2014) Is eutrophication really a major impairment for small waterbodies’ biodiversity? J Appl Ecol (in press)

  • Smith VH (2003) Eutrophication of freshwater and coastal marine ecosystems—a global problem. Environ Sci Pollut Res 10:126–139

    Article  CAS  Google Scholar 

  • Søndergaard M, Jeppesen E, Jensen JP, Amsinck SL (2005) Water framework directive: ecological classification of Danish lakes. J Appl Ecol 42:616–629

    Article  Google Scholar 

  • Tanguy H, Ferlin P, Suche JM (2008) Rapport sur le développement de l’aquaculture en France. Ministère de l’Agriculture et de la Pêche, Paris

    Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton University Press, USA

    Google Scholar 

  • Veech JA, Summerville KS, Crist TO, Gering JC (2002) The additive partitioning of species diversity: recent revival of an old idea. Oikos 99:3–9

    Article  Google Scholar 

  • Wezel A, Arthaud F, Dufloux C, Renoud F, Vallod D, Robin J, Sarrazin B (2013a) Varied impact of land use on water and sediment parameters on fish ponds of the Dombes agroecosystem, France. Hydrol Sci J 58(4):1–17

    Article  Google Scholar 

  • Wezel A, Guerin M, Robin J, Arthaud F, Vallod D (2013b) Management effects on water quality, sediments and fish production in extensive fish ponds in the Dombes region, France. Limnologica 43(3):210–218. doi:10.1016/j.limno.2012.11.003

  • Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecol Monogr 30:280–338

    Article  Google Scholar 

  • Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21:213–251

    Article  Google Scholar 

  • Williams P, Whitfield M, Biggs J, Bray S, Fox G, Nicolet P, Sear D (2003) Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol Conserv 115:329–341

    Article  Google Scholar 

  • Wilson MV, Shmida A (1984) Measuring beta diversity with presence-absence data. J Ecol 72:1055–1064

    Article  Google Scholar 

  • Wilson SD, Tilman D (1991) Components of plant competition along an experimental gradient of nitrogen availability. Ecology 72:1050–1065

    Article  Google Scholar 

  • Xiao C, Dou W-F, Liu G-H (2010) Variation in vegetation and seed banks of freshwater lakes with contrasting intensity of aquaculture along the Yangtze River, China. Aquat Bot 92(3):195–199

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the work of the many different persons who collected either water samples or species samples during the 3 years. In particular we thank Thomas Lhuillery and Mathieu Guérin for their large investment in the sampling and water analysis work. We also acknowledge the comments of the two reviewers which helped to significantly improve this paper. This study was supported by the French Ministry of the Environment and Sustainable Development through the DIVA2 programme, the Water Agency (Agence de l’Eau Rhône-Méditerranée-Corse) and the Rhône-Alpes Region. We sincerely thank the fish farmers who allowed us to work in and around their fish ponds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Wezel.

Additional information

Handling Editor: Nisikawa Usio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wezel, A., Oertli, B., Rosset, V. et al. Biodiversity patterns of nutrient-rich fish ponds and implications for conservation. Limnology 15, 213–223 (2014). https://doi.org/10.1007/s10201-013-0419-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10201-013-0419-7

Keywords

Navigation