Skip to main content
Log in

Finding copepod footprints: a protocol for molecular identification of diapausing eggs in lake sediments

  • Research paper
  • Published:
Limnology Aims and scope Submit manuscript

Abstract

Even though calanoid copepods produce diapausing eggs that stay alive in lake sediments, these eggs have rarely been used paleolimnologically, as they lack diagnostic morphological features. In this study, we developed a method to identify copepod diapausing eggs in Japan as a clue toward reconstructing past plankton populations. We first determined a 28S ribosomal DNA (rDNA) (i.e., nc28S) regional sequence library (240 bp) of various calanoid copepod species using ethanol-fixed plankton samples collected from across the Japanese archipelago. Then we applied the UltraSHOT method to extract DNA from an individual diapausing egg. Finally, the nc28S region of diapausing eggs collected from various lakes was sequenced and compared with the regional library for species identification. In total, 21 haplotypes of the nc28S region were recovered from planktonic samples of 11 Japanese freshwater calanoid copepod species. Despite the short length of this region, no identical haplotypes were shared among the species analyzed, including the Acanthodiaptomus pacificus complex treated as a species. Even different lineages of A. pacificus could be separated. These results indicate that the nc28S region can be used as a barcode in Japan. A total of 112 diapausing eggs collected from various lakes and ponds was processed, and the nc28S region of each was successfully sequenced. All of these egg sequences matched one or the other of the nc28S haplotypes in the regional library mentioned above. The set of protocols we applied (i.e., preparing a comprehensive regional sequence library and sequencing egg DNA) is thus useful for involving copepod diapausing eggs in paleolimnological studies in lakes. The nc28S region treated in this study has a strong potential to uncover the paleodiversity of copepods, at least in Japan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adamowicz SJ, Menu-Marque S, Halse SA, Topan JC, Zemlak TS, Hebert PDN, Witt JDS (2010) The evolutionary diversification of the Centropagidae (Crustacea, Calanoida): a history of habitat shifts. Mol Phylogenet Evol 55:418–430

    Article  PubMed  Google Scholar 

  • Albert MR, Chen G, MacDonald GK, Vermaire JC, Bennett M, Gregory-Eaves I (2010) Phosphorus and land-use changes are significant drivers of cladoceran community composition and diversity: an analysis over spatial and temporal scales. Can J Fish Aquat Sci 67:1262–1273

    Article  CAS  Google Scholar 

  • Asmyhr MG, Cooper SJB (2012) Difficulties barcoding in the dark: the case of crustacean stygofauna from eastern Australia. Invertebr Syst 26:583–591

    Article  CAS  Google Scholar 

  • Auclair JC, Frenette JJ, Dodson J (1993) Zooplankton community structure in southwestern Québec lakes: the rôles of acidity and predation. J Plankton Res 15:1103–1128

    Article  Google Scholar 

  • Ban S (1992) Seasonal distribution, abundance and viability of dapause eggs of Eurytemora affinis (Copepoda: Calanoida) in the sediment of Lake Ohnuma, Hokkaido. Bull Plankton Soc Jpn 39:41–48

    Google Scholar 

  • Ban S, Minoda T (1991) The effect of temperature on the development and hatching of diapausing and subitaneous eggs in Eurytemora affinis (Copepoda: Calanoida) in Lake Ohnuma, Hokkaido, Japan. Bull Plankton Soc Jpn Spec Vol:299–308

  • Ban S, Minoda T (1992) Hatching of diapause eggs of Eurytemora affinis (Copepoda: Calanoida) collected from lake-bottom sediments. J Crust Biol 12:51–56

    Article  Google Scholar 

  • Bennike O (1998) Fossil egg sacs of Diaptomus (Crustacea: Copepoda) in Late Quaternary lake sediments. J Paleolimnol 19:77–79

    Article  Google Scholar 

  • Bissett A, Gibson JAE, Jarman SN, Swadling KM, Cromer L (2005) Isolation, amplification, and identification of ancient copepod DNA from lake sediments. Limnol Oceanogr Methods 3:533–542

    Article  Google Scholar 

  • Blanco-Bercial L, Bradford-Grieve J, Bucklin A (2011) Molecular phylogeny of the Calanoida (Crustacea: Copepoda). Mol Phylogenet Evol 59:103–113

    Article  PubMed  Google Scholar 

  • Briski E, Cristescu ME, Bailey SA, MacIssac HJ (2011) Use of DNA barcode to detect invertebrate invasive species from diapausing eggs. Biol Invasion 13:1325–1340

    Article  Google Scholar 

  • Brooks JL, Dodson SI (1965) Predation, body size, and composition of plankton: the effect of a marine planktivore on lake plankton illustrates theory of size, composition, and predation. Science 150:28–35

    Article  PubMed  CAS  Google Scholar 

  • Bucklin A, Allen LD (2004) MtDNA sequencing from zooplankton after long-term preservation in buffered formalin. Mol Phylogenet Evol 30:879–882

    Article  PubMed  CAS  Google Scholar 

  • Bucklin A, Steinke D, Blanco-Bercial L (2011) DNA barcoding of marine metazoa. Annu Rev Mar Sci 3:471–508

    Article  Google Scholar 

  • Carpenter SR, Kitchell JF (1985) Cascading trophic interactions and lake productivity. BioScience 35:634–639

    Article  Google Scholar 

  • Cepada GD, Blanco-Bercial L, Bucklin A, Beron CM, Vinas MD (2012) Molecular systematic of three species of Oithona (Copepoda, Cyclopoida) from the Atlantic Ocean: comparative analysis using 28S rDNA. PLoS ONE 7:e35861

    Article  Google Scholar 

  • Chan EM, Derry AM, Watson LA, Arnott SE (2008) Variation in calanoid copepod resting egg abundance among lakes with different acidification histories. Hydrobiologia 614:275–284

    Article  Google Scholar 

  • Costa FO, deWaard FR, Boutillier F, Ratnasingham S, Dooh ST, Hajibabael M, Hebert PDN (2007) Biological identifications through DNA barcodes: the case of the Crustacea. Can J Fish Aquat Sci 64:272–295

    Article  CAS  Google Scholar 

  • De Stasio BT Jr (1989) The seed bank of a freshwater crustacean: copepodology for the plant ecologist. Ecology 70:1377–1389

    Article  Google Scholar 

  • deWaard JR, Hebert PDN, Humble LM (2011) A comprehensive DNA barcode library for the looper moss (Lepidoptera: Geometridae) of British Columbia, Canada. PLoS ONE 6:e18290

    Article  PubMed  CAS  Google Scholar 

  • Dussart BH, Defaye D (1983) Répertoire mondial des crustacés copépodes eaux intérieures. I. Calanoïdes. CNRS, Paris

    Google Scholar 

  • Dussart BH, Defaye D (1995) Copepoda. Introduction to the Copepoda. SPB Academic Publishing, Amsterdam

    Google Scholar 

  • Fell JW, Scorzetti G, Gonnell L, Graig S (2006) Biodiversity of micro-eukaryotes in Antarctic Dry Valley soils with < 5% soil moisture. Soil Biol Boichem 38:3107–3119

    Article  CAS  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3:294–299

    CAS  Google Scholar 

  • Frey DG (1964) Remains of animals in quaternary lake and bog sediments and their interpretation. Ergebn Limnol 2:1–116

    Google Scholar 

  • Hairston N Jr, Olds EJ (1984) Population differences in the timing of diapause: adaptation in a spatially heterogeneous environment. Oecologia 61:42–48

    Article  Google Scholar 

  • Hairston N Jr, Van Brunt RA, Kearns CM, Engstrom DR (1995) Age and survivorship of diapausing eggs in a sediment egg bank. Ecology 76:1706–1711

    Article  Google Scholar 

  • Hajibabaei M, Smith MA, Janzen DH, Rodriguez JJ, Whitefield JB, Hebert PDN (2006) A minimalist barcode can identify a specimen whose DNA is degraded. Mol Ecol Notes 6:959–964

    Article  CAS  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, deWaaard JR (2003a) Biological identifications through DNA barcodes. Proc R Soc Lond B 270:313–321

    Article  CAS  Google Scholar 

  • Hebert PDN, Ratnasingham S, deWaard DR (2003b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc London B 270(Suppl 1):S96–S99

    Article  CAS  Google Scholar 

  • Hutchinson GE (1967) A treatise on limnology, vol. 2. Introduction to lake biology and the limnoplankton. John Wiley and Sons, New York

  • Ishida S, Otsuki H, Awano T, Makino W, Suyama Y, Urabe J (2012) DNA extraction and amplification methods for ephippial carapace of Daphnia resting eggs in lake sediments: a novel approach for reconstructing zooplankton population structure from the past. Limnology 13:261–267

    Article  Google Scholar 

  • Jeppesen E, Jensen JP, Søndergaard M, Lauridsen T, Landkildehus F (2000) Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshw Biol 45:201–218

    Article  CAS  Google Scholar 

  • Jeppesen E, Leavitt PR, De Meester L, Jensen JP (2001) Functional ecology and palaeolimnology: using cladoceran remains to reconstruct anthropogenic impact. Trends Ecol Evol 16:191–198

    Article  PubMed  Google Scholar 

  • Kiesling TL, Wilkinson E, Rabalais J, Ortner PB, McCabe MM, Fell JW (2002) Rapid identification of adult and naupliar stages of copepods using DNA hybridization methodology. Mar Biotech 4:30–39

    CAS  Google Scholar 

  • Kim S, Song K-H, Ree H-I, Kim W (2012) A DNA barcode library for Korean Chironomidae (Insecta: Diptera) and indexes for defining barcode gap. Mol Cells 33:9–17

    Article  PubMed  CAS  Google Scholar 

  • Lampert W, Sommer U (1997) Limnoecology. The ecology of lakes and streams. Oxford University Press, Oxford

    Google Scholar 

  • Leavitt PR, Carpenter SR, Kitchell JF (1989) Whole-lake experiments: the annual records of fossil pigments and zooplankton. Limnol Oceanogr 34:700–717

    Article  Google Scholar 

  • Machida RJ, Tsuda A (2010) Dissimilarity of species and forms of planktonic Neocalanus copepod using mitochondrial COI, 12S, nuclear ITS, and 28S gene sequences. PLoS ONE 5:e10278

    Article  PubMed  Google Scholar 

  • Makino W, Tanabe AS (2009) Extreme population genetic differentiation and secondary contact in the freshwater copepod Acanthodiaptomus pacificus in the Japanese Archipelago. Mol Ecol 18:3699–3713

    Article  PubMed  CAS  Google Scholar 

  • Makino W, Knox MA, Duggan IC (2010) Invasion, genetic variation and species identity of the calanoid copepod Sinodiaptomus valkanovi. Freshw Biol 55:375–386

    Article  CAS  Google Scholar 

  • Marrone F, Lo Brutto S, Hundsdoerfer AK, Arculeo M (2013) Overlooked cryptic endemism in copepods: systematics and natural history of the calanoid subgenus Occidodiaptomus Borutzky 1991 (Copepoda, Calanoida, Diaptomidae). Mol Phylogenet Evol 66:190–202

    Article  PubMed  Google Scholar 

  • Meusnier I, Singer GAC, Landry J-F, Hickey DA, Hebert PDN, Hajibabaei M (2008) A universal DNA mini-barcode for biodiversity analysis. BMC Genomics 9:214

    Article  PubMed  Google Scholar 

  • Mizuno T, Takahashi E (eds) (2000) An illustrated guide to freshwater zooplankton in Japan (in Japanese). Tokai University Press, Tokyo

    Google Scholar 

  • Montero-Pau J, Gómez A, Muños J (2008) Application of an inexpensive and high-throughput genomic DNA extraction method for the molecular ecology of zooplanktonic diapausing egg. Limnol Oceanogr Methods 6:218–222

    Article  CAS  Google Scholar 

  • Pace ML (1986) An empirical analysis of zooplankton community size structure across lake trophic gradients. Limnol Oceanogr 31:45–55

    Article  Google Scholar 

  • Parker BR, Wilhelm FM, Schindler DW (1996) Recovery of Hesperodiaptomus articus populations from diapausing eggs following elimination by stocked salmonids. Can J Zool 74:1292–1297

    Article  Google Scholar 

  • Schindler DW (1977) Evolution of phosphorus limitation in lakes. Science 195:260–262

    Article  PubMed  CAS  Google Scholar 

  • Selden AP, Huys R, Stephenson MH, Heward AP, Taylor PN (2010) Crustaceans from bitumen clast in Carboniferous glacial diamictite extend fossil records of copepods. Nat Commun 1:50

    Article  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetic analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2371–2379

    Article  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Xu Z-H, Wang G-Z, Mu Q, Wu L-S, Li S-J (2011) An approach to the study of copepod egg banks based on efficient DNA extraction from individual copepod eggs. Mar Biol Res 7:592–598

    Article  Google Scholar 

Download references

Acknowledgments

We thank anonymous reviewers for providing useful comments and references. This research was supported by grants from the Ministry of the Environment, Japan (the Environment Research and Technology Development Fund, No. D-1002) to JU and from the Japan Society for the Promotion of Science (KAKENHI, Nos. 16770011, 19770010, and 23570015) to WM. We are grateful to Syuhei Ban, Ryoma Hayashi, Ryuta Himori, Fujio Hyodo, Seiji Ishida, Michinobu Kuwae, Naoko Sasaki, Kohei Omoto, and Narumi K. Tsugeki for their support with some of our samplings. All works in this study comply with the current laws of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wataru Makino.

Additional information

Handling Editor: Takehito Yoshida.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. S1 (PDF 384 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makino, W., Ohtsuki, H. & Urabe, J. Finding copepod footprints: a protocol for molecular identification of diapausing eggs in lake sediments. Limnology 14, 269–282 (2013). https://doi.org/10.1007/s10201-013-0404-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10201-013-0404-1

Keywords

Navigation