Skip to main content
Log in

A transition model for analyzing multivariate longitudinal data using Gaussian copula approach

  • Original Paper
  • Published:
AStA Advances in Statistical Analysis Aims and scope Submit manuscript

Abstract

Longitudinal studies often involve multiple mixed response variables measured repeatedly over time. Although separate modeling of these multiple mixed response variables can be easily performed, they may lead to inefficient estimates and consequently, misleading inferences. For obtaining correct inference, one needs to model multiple mixed responses jointly. In this paper, we use copula models for defining a multivariate distribution for multiple mixed outcomes at each time point. Then, we use transition model for considering association between longitudinal measurements. Two simulation studies are performed for illustration of the proposed approach. The results of the simulation studies show that the use of the separate models instead of the joint modeling leads to inefficient parameter estimates. The proposed approach is also used for analyzing two real data sets. The first data set is a part of the British Household Panel Survey. In this data set, annual income and life satisfaction are considered as the continuous and the ordinal correlated longitudinal responses, respectively. The second data set is a longitudinal data about heart failure patients. This study is a treatment–control study, where the effect of a treatment is simultaneously investigated on readmission and referral to doctor as two binary associated longitudinal responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aas, K., Czado, C., Frigessi, A., Bakken, H.: Pair-copula constructions of multiple dependence. Insurance Math. Econ. 44(2), 182–198 (2009)

    Article  MathSciNet  Google Scholar 

  • Agresti, A.: Categorical Data Analysis, vol. 996. Wiley, New York (1996)

    MATH  Google Scholar 

  • Agresti, A.: Analysis of Ordinal Categorical Data, vol. 656. Wiley, New York (2010)

    Book  Google Scholar 

  • Baghfalaki, T., Ganjali, M., Berridge, D.: Joint modeling of multivariate longitudinal mixed measurements and time to event data using a Bayesian approach. J. Appl. Stat. 41(9), 1934–1955 (2014)

    Article  MathSciNet  Google Scholar 

  • Bandyopadhyay, S., Ganguli, B., Chatterjee, A.: A review of multivariate longitudinal data analysis. Stat. Methods Med. Res. 20(4), 299–330 (2011)

    Article  MathSciNet  Google Scholar 

  • de Leon, A.R., Wu, B.: Copula-based regression models for a bivariate mixed discrete and continuous outcome. Stat. Med. 30(2), 175–185 (2011)

    Article  MathSciNet  Google Scholar 

  • Diggle, P., Heagerty, P., Liang, K.Y., Zeger, S.: Analysis of Longitudinal Data. Oxford Unuiversity Press, Oxford (2002)

    MATH  Google Scholar 

  • Fieuws, S., Verbeke, G.: Pairwise fitting of mixed models for the joint modeling of multivariate longitudinal profiles. Biometrics 62(2), 424–431 (2006)

    Article  MathSciNet  Google Scholar 

  • Ganjali, M., Baghfalaki, T.: A copula approach to joint modeling of longitudinal measurements and survival times using Monte Carlo expectation-maximization with application to AIDS studies. J. Biopharm. Stat. 25(5), 1077–1099 (2015)

    Article  Google Scholar 

  • Greene, W.H.: Marginal effects in the bivariate probit model. NYU Working Paper No. EC-96-11 (1996)

  • Jiryaie, F., Withanage, N., Wu, B., de Leon, A.R.: Gaussian copula distributions for mixed data, with application in discrimination. J. Stat. Comput. Simul. 86(9), 1643–1659 (2015)

    Article  MathSciNet  Google Scholar 

  • Kirk, D.B.: On the numerical approximation of the bivariate normal (tetrachoric) correlation coefficient. Psychometrika 38(2), 259–268 (1973)

    Article  Google Scholar 

  • Lambert, P., Vandenhende, F.: A copula-based model for multivariate non-normal longitudinal data: analysis of a dose titration safety study on a new antidepressant. Stat. Med. 21(21), 3197–3217 (2002)

    Article  Google Scholar 

  • Liang, K.Y., Zeger, S.L.: Longitudinal data analysis using generalized linear models. Biometrika 73(1), 13–22 (1986)

    Article  MathSciNet  Google Scholar 

  • Masarotto, G., Varin, C.: Gaussian copula marginal regression. Electron. J. Stat. 6, 1517–1549 (2011)

    Article  MathSciNet  Google Scholar 

  • Molenberghs, G., Lesaffre, E.: Marginal modeling of correlated ordinal data using a multivariate Plackett distribution. J. Am. Stat. Assoc. 89(426), 633–644 (1994)

    Article  Google Scholar 

  • Molenberghs, G., Verbeke, G.: Models for Discrete Longitudinal Data. Springer Series in Statistics. Springer, New York (2005)

    MATH  Google Scholar 

  • Morrell, C.H., Brant, L.J., Sheng, S., Najjar, S.: Using multivariate mixed-effects models to predict hypertension. In: Joint Statistical Meetings-Biometrics Section-to include ENAR & WNAR (2003)

  • Panagiotelis, A., Czado, C., Joe, H.: Pair copula constructions for multivariate discrete data. J. Am. Stat. Assoc. 107(499), 1063–1072 (2012)

    Article  MathSciNet  Google Scholar 

  • Reeves, J., MacKenzie, G.: A bivariate regression model with serial correlation. J. R. Stat. Soc. Ser. D (Stat.) 47(4), 607–615 (1998)

    Article  Google Scholar 

  • Reinsel, G.: Multivariate repeated-measurement or growth curve models with multivariate random-effects covariance structure. J. Am. Stat. Assoc. 77(377), 190–195 (1982)

    Article  MathSciNet  Google Scholar 

  • Reinsel, G.: Estimation and prediction in a multivariate random effects generalized linear model. J. Am. Stat. Assoc. 79(386), 406–414 (1984)

    Article  MathSciNet  Google Scholar 

  • Rencher, A.C.: Methods of Multivariate Analysis, vol. 492. Wiley, New York (2003)

    MATH  Google Scholar 

  • Rochon, J.: Analyzing bivariate repeated measures for discrete and continuous outcome variables. Biometrics 52(2), 740–750 (1996)

    Article  Google Scholar 

  • Roy, J., Lin, X.: Latent variable models for longitudinal data with multiple continuous outcomes. Biometrics 56(4), 1047–1054 (2000)

    Article  MathSciNet  Google Scholar 

  • Shah, A., Laird, N., Schoenfeld, D.: A random-effects model for multiple characteristics with possibly missing data. J. Am. Stat. Assoc. 92(438), 775–779 (1997)

    Article  MathSciNet  Google Scholar 

  • Sklar, A.: Fonctions de repartition a n dimensions et leurs marges. Pub. Inst. Stat. Univ. Paris 8, 229–231 (1959)

    MATH  Google Scholar 

  • Smith, M., Min, A., Almeida, C., Czado, C.: Modeling longitudinal data using a pair-copula decomposition of serial dependence. J. Am. Stat. Assoc. 105, 1467–1479 (2012)

    Article  MathSciNet  Google Scholar 

  • Song, X.K.: Correlated Data Analysis: Modeling, Analytics, and Applications. Springer Science and Business Media, New York (2007)

    MATH  Google Scholar 

  • Song, P.X.K., Li, M., Yuan, Y.: Joint regression analysis of correlated data using Gaussian copulas. Biometrics 65(1), 60–68 (2009)

    Article  MathSciNet  Google Scholar 

  • Taylor, M.F., Brice, J., Buck, N., Prentice-Lane, E.: British Household Panel Survey User Manual. Volume A: Introduction, Technical Report and Appendices. Colchester: University of Essex (2005)

  • Teimourian, M., Baghfalaki, T., Ganjali, M., Berridge, D.: Joint modeling of mixed skewed continuous and ordinal longitudinal responses: a Bayesian approach. J. Appl. Stat. 42(10), 2233–2256 (2015)

    Article  MathSciNet  Google Scholar 

  • Trivedi, P.K., Zimmer, D.M.: Copula modeling: an introduction for practitioners. Found. Trends Econom. 1(1), 1–111 (2007)

    Article  Google Scholar 

  • Verbeke, G., Molenberghs, G.: Linear Mixed Models for Longitudinal Data. Springer Science and Business Media, New York (2000)

    MATH  Google Scholar 

  • Verbeke, G., Fieuws, S., Molenberghs, G., Davidian, M.: The analysis of multivariate longitudinal data: a review. Stat. Methods Med. Res. 23(1), 42–59 (2014)

    Article  MathSciNet  Google Scholar 

  • Yau, K.K., Lee, A.H., Ng, A.S.: Theory & methods: a zero-augmented gamma mixed model for longitudinal data with many zeros. Aust. N. Z. J. Stat. 44(2), 177–183 (2002)

    Article  MathSciNet  Google Scholar 

  • Zellner, A.: An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. J. Am. Stat. Assoc. 57(298), 348–368 (1962)

    Article  MathSciNet  Google Scholar 

  • Zhu, C., Byrd, R.H., Lu, P., Nocedal, J.: Algorithm 778: L-BFGS-B: fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw. (TOMS) 23(4), 550–560 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to School of Biological Sciences at IPM for their supports. This research is supported in part by a grant (BS-1396-02-01) from the Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Taban Baghfalaki or Mojtaba Ganjali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baghfalaki, T., Ganjali, M. A transition model for analyzing multivariate longitudinal data using Gaussian copula approach. AStA Adv Stat Anal 104, 169–223 (2020). https://doi.org/10.1007/s10182-018-00346-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10182-018-00346-w

Keywords

Navigation