Skip to main content
Log in

Empirical phi-divergence test statistics for the difference of means of two populations

  • Original Paper
  • Published:
AStA Advances in Statistical Analysis Aims and scope Submit manuscript

Abstract

Empirical phi-divergence test statistics have demostrated to be a useful technique for the simple null hypothesis to improve the finite sample behavior of the classical likelihood ratio test statistic, as well as for model misspecification problems, in both cases for the one population problem. This paper introduces this methodology for two-sample problems. A simulation study illustrates situations in which the new test statistics become a competitive tool with respect to the classical z test and the likelihood ratio test statistic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adimari, G.: Empirical likelihood confidence intervals for the difference between means. Statistica 55, 87–94 (1995)

    MathSciNet  MATH  Google Scholar 

  • Baggerly, K.A.: Empirical likelihood as a goodness-of-fit measure. Biometrika 85, 535–547 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Baklizi, A., Kibria, B.M.G.: One and two sample confidence intervals for estimating the mean of skewed populations: an empirical comparative study. J. Appl. Stat. 36, 601–609 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Balakrishnan, N., Martín, N., Pardo, L.: Empirical phi-divergence test statistics for testing simple and composite null hypotheses. Statistics 49(5), 951–977 (2015). doi:10.1080/02331888.2014.957702

    Article  MathSciNet  MATH  Google Scholar 

  • Basu, A., Mandal, A., Martin, N., Pardo, L.: Robust tests for the equality of two normal means based on the density power divergence. Metrika 78, 611–634 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Broniatowski, M., Keziou, A.: Divergences and duality for estimating and test under moment condition models. J. Stat. Plan. Inference 142, 2554–2573 (2012)

    Article  MATH  Google Scholar 

  • Cressie, N., Pardo, L.: Phi-divergence statisitcs. In: Elshaarawi, A.H., Plegorich, W.W. (eds.) Encyclopedia of Environmetrics, vol. 3, pp. 1551–1555. Wiley, New York (2002)

    Google Scholar 

  • Felipe, A., Martín, N., Miranda, P., Pardo, L.: Empirical phi-divergence test statistics for testing simple null hypotheses based on exponentially tilted empirical likelihood estimators. arXiv preprint arXiv:1503.00994 (2015)

  • Fu, Y., Wang, X., Wu, C.: Weighted empirical likelihood inference for multiple samples. J. Stat. Plan. Inference 139, 1462–1473 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Jing, B.Y.: Two-sample empirical likelihood method. Stat. Probab. Lett. 24, 315–319 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Kibria, B.M.G., Banik, S.: Parametric and nonparametric confidence intervals for estimating the difference of means of two skewed populations. J. Appl. Stat. 40, 2617–2636 (2013)

    Article  MathSciNet  Google Scholar 

  • Liu, Y., Zou, C., Zhang, R.: Empirical likelihood for the two sample mean problem. Stat. Probab. Lett. 78, 548–556 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Menéndez, M.L., Morales, D., Pardo, L., Salicrú, M.: Asymptotic behavior and statistical applications of divergence measures in multinomial populations: a unified study. Stat. Pap. 36, 1–29 (1995)

    Article  MATH  Google Scholar 

  • Menéndez, M.L., Pardo, J.A., Pardo, L., Pardo, M.C.: Asymptotic approximations for the distributions of the \((h,\phi )\)-divergence goodness-of-fit statistics: applications to Rényi’s statistic. Kybernetes 26, 442–452 (1997)

    Article  MATH  Google Scholar 

  • Morales, D., Pardo, L., Pardo, M.C.: Likelihood divergence statistics for testing hypotheses about multiple population. Commun. Stat. Simul. Comput. 30, 867–884 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Owen, A.B.: Empirical likelihood ratio confidence interval for a single functional. Biometrika 75, 308–313 (1988)

    Article  MathSciNet  Google Scholar 

  • Owen, A.B.: Empirical likelihood ratio confidence regions. Ann. Stat. 18, 90–120 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Owen, A.B.: Empirical likelihood for linear models. Ann. Stat. 19, 1725–1747 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Owen, A.B.: Empirical Likelihood. Chapman & Hall/ CRC Press, Boca Raton (2001)

    Book  MATH  Google Scholar 

  • Pardo, L.: Statistical Inference Based on Divergence Measures. Chapman & Hall/ CRC Press, Boca Raton (2006)

    MATH  Google Scholar 

  • Qin, J.: Semi-parametric likelihood ratio confidence intervals for the difference of two sample means. Ann. Inst. Stat. Math. 46, 117–126 (1994)

    Article  MATH  Google Scholar 

  • Qin, J.: Inferences for case–control and semiparametric two-sample densisty ratio models. Biometrika 85, 619–630 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Qin, Y., Zhao, L.: Empirical likelihood ratio intervals for various differences of two populations. J. Syst. Sci. Complex. 13, 23–30 (2000)

    MathSciNet  MATH  Google Scholar 

  • Rényi, A.: On measures of entropy and information. In: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 547–561 (1961)

  • Tsao, M., Wu, C.: Empirical likelihood inference for a common mean in the presence of heteroscedasticity. Can. J. Stat. 34(1), 45–59 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Yan, Y.: Empirical likelihood inference for two-sample problems. Unpublished master’s thesis, Department of Statisticsd and Actuarial Science, University of Waterloo, Canada (2010)

  • Yu, P.L.H., Su, Y., Sinha, B.: Estimation of the common mean of a bivariate normal population. Ann. Inst. Stat. Math. 54, 861–878 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, C., Yan, Y.: Empirical likelihood inference for two-sample problems. Stat. Interface 5, 345–354 (2012)

    Article  MathSciNet  Google Scholar 

  • Zhang, B.: Estimating the treatment effect in the two-sample problem with auxiliary information. Nonparametr. Stat. 12, 377–389 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of the anonymous referees is recognizes, size their comments have improved the paper. This research is partially supported by Grants MTM2012-33740, MTM2015-67057-P and ECO2015-66593-P from Ministerio de Economia y Competitividad (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Martín.

Appendix

Appendix

1.1 Proof of Lemma 1

In a similar way as in Hall and Scala (1990), we can establish

$$\begin{aligned} \lambda _{1}= & {} \lambda _{1}\left( \mu \right) =-\sigma _{1}^{-2}\left( \overline{X}-\mu \right) +O_{p}(m^{-1})\text { and }\\&\quad \lambda _{2}=\lambda _{2}\left( \mu \right) = -\sigma _{2}^{-2}\left( \overline{Y}-\mu -\delta _{0}\right) +O_{p}(n^{-1}). \end{aligned}$$

Now applying that

$$\begin{aligned} m\lambda _{1}\left( \mu \right) +n\lambda _{2}\left( \mu \right) =0, \end{aligned}$$

we have

$$\begin{aligned} m\sigma _{1}^{-2}\left( \overline{X}-\mu \right) +O_{p}(1)+n\sigma _{2} ^{-2}\left( \overline{Y}-\mu -\delta _{0}\right) +O_{p}(1)=0. \end{aligned}$$
(35)

Solving the equation for \(\mu \), we have the enunciated result.

1.2 Proof of Theorem 2

First, we are going to establish

$$\begin{aligned}&\frac{2}{\phi ^{\prime \prime }\left( 1\right) }\sum \limits _{i=1}^{m}mp_{i} \phi \left( \frac{1}{mp_{i}}\right) =m\left( \frac{\overline{X}-\mu }{\sigma _{1}}\right) ^{2}+o_{p}(1) \end{aligned}$$
(36)
$$\begin{aligned}&\frac{2}{\phi ^{\prime \prime }\left( 1\right) } {\textstyle \sum \limits _{j=1}^{n}} nq_{j}\phi \left( \frac{1}{nq_{j}}\right) =n\left( \frac{\overline{Y} -\mu -\delta _{0}}{\sigma _{2}}\right) ^{2}+o_{p}(1). \end{aligned}$$
(37)

If we denote \(W_{i}=\lambda _{1}\left( \mu \right) \left( X_{i}-\mu \right) \) we have \(\phi \left( \frac{1}{mp_{i}}\right) =\phi \left( 1+W_{i}\right) \). A Taylor expansion gives

$$\begin{aligned} \phi \left( 1+W_{i}\right) =\phi \left( 1\right) +\phi ^{\prime }\left( 1\right) W_{i}+\frac{1}{2}\phi ^{\prime \prime }\left( 1\right) W_{i} ^{2}+o\left( W_{i}^{2}\right) . \end{aligned}$$

On the other hand

$$\begin{aligned} mp_{i}=\frac{1}{1+\lambda _{1}\left( \mu \right) \left( X_{i}-\mu \right) }=\frac{1}{1+W_{i}}=1-W_{i}+W_{i}^{2}+o\left( W_{i}^{2}\right) . \end{aligned}$$

Then

$$\begin{aligned}&\frac{2}{\phi ^{\prime \prime }\left( 1\right) }\sum \limits _{i=1}^{m}mp_{i} \phi \left( \frac{1}{mp_{i}}\right) =\frac{2}{\phi ^{\prime \prime }\left( 1\right) }\sum \limits _{i=1}^{m}\left( 1-W_{i}+W_{i}^{2}+o\left( W_{i} ^{2}\right) \right) \left( \frac{1}{2}\phi ^{\prime \prime }\left( 1\right) W_{i}^{2}\right. \\&\quad \quad \left. +\,o\left( W_{i}^{2}\right) \right) =\frac{2}{\phi ^{\prime \prime }\left( 1\right) }\left( \frac{1}{2} \phi ^{\prime \prime }\left( 1\right) \sum \limits _{i=1}^{m}W_{i}^{2} +\sum \limits _{i=1}^{m}o\left( W_{i}^{2}\right) -\frac{1}{2}\phi ^{\prime \prime }\left( 1\right) \sum \limits _{i=1}^{m}W_{i}^{3}\right. \\&\quad \quad \left. -\,\sum \limits _{i=1}^{m}o\left( W_{i}^{2}\right) W_{i}+\frac{1}{2}\phi ^{\prime \prime }\left( 1\right) \sum \limits _{i=1}^{m}W_{i}^{4} +\sum \limits _{i=1}^{m}o\left( W_{i}^{2}\right) W_{i}^{2}\right. \\&\quad \quad \left. +\,\frac{1}{2}\phi ^{\prime \prime }\left( 1\right) \sum \limits _{i=1}^{m}o\left( W_{i}^{2}\right) W_{i}^{2}+\sum \limits _{i=1} ^{m}o\left( W_{i}^{2}\right) o\left( W_{i}^{2}\right) \right) \\&\quad =\sum \limits _{i=1}^{m}W_{i}^{2}+\frac{2}{\phi ^{\prime \prime }\left( 1\right) }\sum \limits _{i=1}^{m}o\left( W_{i}^{2}\right) -\sum \limits _{i=1}^{m}W_{i}^{3}-\sum \limits _{i=1}^{m}o\left( W_{i}^{2}\right) W_{i}+\sum \limits _{i=1}^{m}W_{i}^{4}\\&\quad \quad +\,\frac{2}{\phi ^{\prime \prime }\left( 1\right) }\sum \limits _{i=1} ^{m}o\left( W_{i}^{2}\right) +\sum \limits _{i=1}^{m}o\left( W_{i} ^{2}\right) W_{i}^{2}+\frac{2}{\phi ^{\prime \prime }\left( 1\right) } \sum \limits _{i=1}^{m}o\left( W_{i}^{2}\right) o\left( W_{i}^{2}\right) . \end{aligned}$$

But

\(\bullet \) \(\begin{array}{ll}\frac{2}{\phi ^{\prime \prime }\left( 1\right) } {\textstyle \sum \limits _{i=1}^{m}} o\left( W_{i}^{2}\right) &{}=\frac{2}{\phi ^{\prime \prime }\left( 1\right) } {\textstyle \sum \limits _{i=1}^{m}} o\left( \lambda _{1}^{2}\left( \mu \right) \left( X_{i}-\mu \right) ^{2}\right) =\frac{2}{\phi ^{\prime \prime }\left( 1\right) }m\frac{1}{m} {\textstyle \sum \limits _{i=1}^{m}} \left( X_{i}-\mu \right) ^{2}o\left( \lambda _{1}^{2}\left( \mu \right) \right) \\ &{}=mo_{p}(1)o\left( O_{p}\left( m^{-1}\right) \right) =o_{p}(1)\end{array}\), because

$$\begin{aligned} \lambda _{1}\left( \mu \right) =O_{p}(m^{-1/2}) \end{aligned}$$

(see page 220 in Owen (2001)), and

$$\begin{aligned} \frac{1}{m}\sum \limits _{i=1}^{m}\left( X_{i}-\mu \right) ^{2}=o_{p}(1) \end{aligned}$$

applying the strong law of large numbers.

\(\bullet \) \(\left| {\textstyle \sum \limits _{i=1}^{m}} W_{i}^{3}\right| \le \left| \lambda _{1}\left( \mu \right) ^{3}\right| m\frac{1}{m} {\textstyle \sum \limits _{i=1}^{m}} \left| X_{i}-\mu \right| ^{3}=O_{p}(m^{-3/2})mo\left( m^{1/2}\right) =o_{p}(1)\), because

$$\begin{aligned} \frac{1}{m}\sum \limits _{i=1}^{m}\left| X_{i}-\mu \right| ^{3}=o\left( m^{1/2}\right) , \end{aligned}$$

by Lemma 11.3 in page 218 in Owen (2001).

\(\bullet \) \(\left| {\textstyle \sum \limits _{i=1}^{m}} o\left( W_{i}^{2}\right) W_{i}\right| \le o\left( \lambda _{1} ^{2}\left( \mu \right) \right) \lambda _{1}\left( \mu \right) m\frac{1}{m} {\textstyle \sum \limits _{i=1}^{m}} \left| X_{i}-\mu \right| ^{3}=o\left( O_{p}(m^{-1}\right) O_{p}(m^{-1/2})o(m^{3/2})=o_{p}(1)\).

\(\bullet \) \(\left| {\textstyle \sum \limits _{i=1}^{m}} W_{i}^{4}\right| \le \left| \lambda _{1}\left( \mu \right) ^{4}\right| {\textstyle \sum \limits _{i=1}^{m}} \left| X_{i}-\mu \right| ^{4}\le O_{p}\left( m^{-2}\right) mZ_{m}\frac{1}{m} {\textstyle \sum \limits _{i=1}^{m}} \left| X_{i}-\mu \right| ^{3}=O_{p}\left( m^{-2}\right) mo(m^{1/2})O(m^{1/2})=o_{p}(1),\) because

$$\begin{aligned} Z_{m}=\max _{1\le i\le m}\left| X_{i}-\mu \right| =O(m^{1/2}) \end{aligned}$$

applying Lemma 11.2 in page 218 in Owen (2001).

\(\bullet \) \(\left| \frac{2}{\phi ^{\prime \prime }\left( 1\right) } {\textstyle \sum \limits _{i=1}^{m}} o\left( W_{i}^{2}\right) o\left( W_{i}^{2}\right) \right| \le \frac{2}{\phi ^{\prime \prime }\left( 1\right) }\left| \lambda _{1}\left( \mu \right) ^{4}\right| {\textstyle \sum \limits _{i=1}^{m}} \left| X_{i}-\mu \right| ^{4}=o_{p}(1)\). Therefore

$$\begin{aligned} \frac{2}{\phi ^{\prime \prime }\left( 1\right) }\sum \limits _{i=1}^{m}mp_{i} \phi \left( \frac{1}{mp_{i}}\right)&=\sum \limits _{i=1}^{m}W_{i}^{2} +o_{p}(1)\\&=\sum \limits _{i=1}^{m}\lambda _{1}^{2}\left( \mu \right) (X_{i}-\mu )^{2}+o_{p}(1)\\&=\sigma _{1}^{-4}\left( \overline{X}-\mu \right) ^{2}m\frac{1}{m} \sum \limits _{i=1}^{m}(X_{i}-\mu )^{2}+o_{p}(1)\\&=m\left( \frac{\overline{X}-\mu }{\sigma _{1}}\right) ^{2}+o_{p}(1). \end{aligned}$$

In a similar way, we can get

$$\begin{aligned} \frac{2}{\phi ^{\prime \prime }\left( 1\right) }\sum \limits _{j=1}^{n}nq_{j} \phi \left( \frac{1}{nq_{j}}\right) =n\left( \frac{\overline{Y}-\mu -\delta _{0}}{\sigma _{2}}\right) ^{2}+o_{p}(1). \end{aligned}$$

Therefore,

$$\begin{aligned} T_{\phi }\left( \delta _{0}\right)&=\frac{2}{\phi ^{\prime \prime } (1)}\left\{ \sum \limits _{i=1}^{m}m\widetilde{p}_{i}\phi \left( \frac{1}{m\widetilde{p}_{i}}\right) +\sum \limits _{j=1}^{n}n\widetilde{q}_{j} \phi \left( \frac{1}{n\widetilde{q}_{j}}\right) \right\} \\&=m\left( \frac{\overline{X}-\widetilde{\mu }}{\sigma _{1}}\right) ^{2}+n\left( \frac{\overline{Y}-\widetilde{\mu }-\delta _{0}}{\sigma _{2} }\right) ^{2}+o_{p}(1). \end{aligned}$$

Applying (35),

$$\begin{aligned} n\sigma _{2}^{-2}\left( \overline{Y}-\widetilde{\mu }-\delta _{0}\right) =-m\sigma _{1}^{-2}\left( \overline{X}-\widetilde{\mu }\right) +O_{p}(1) \end{aligned}$$

and

$$\begin{aligned} T_{\phi }\left( \delta _{0}\right)&=m\left( \frac{\overline{X}-\widetilde{\mu }}{\sigma _{1}}\right) ^{2}-m\sigma _{1}^{-2}\left( \overline{X}-\widetilde{\mu }\right) \left( \overline{Y}-\widetilde{\mu }-\delta _{0}\right) +o_{p}(1)\\&=m\left( \frac{\overline{X}-\widetilde{\mu }}{\sigma _{1}^{2}}\right) \left( \overline{X}-\widetilde{\mu }-\overline{Y}+\widetilde{\mu }+\delta _{0}\right) +o_{p}(1)\\&=m\left( \frac{\overline{X}-\widetilde{\mu }}{\sigma _{1}^{2}}\right) \left( \overline{X}-\overline{Y}+\delta _{0}\right) +o_{p}(1)\\&=-n\sigma _{2}^{-2}\left( \overline{Y}-\widetilde{\mu }-\delta _{0}\right) \left( \overline{X}-\overline{Y}+\delta _{0}\right) +o_{p}(1). \end{aligned}$$

From (19) we have

$$\begin{aligned} \overline{Y}-\mu -\delta _{0}&=\overline{Y}-\dfrac{\dfrac{m\overline{X} }{\sigma _{1}^{2}}+n\dfrac{\left( \overline{Y}-\delta _{0}\right) }{\sigma _{2}^{2}}}{\dfrac{m}{\sigma _{1}^{2}}+\dfrac{n}{\sigma _{2}^{2}}}-\delta _{0}\\&=\frac{m}{\sigma _{1}^{2}}\frac{\left( -\overline{X}+\overline{Y} -\delta _{0}\right) }{\frac{\sigma _{1}^{2}}{m}+\frac{\sigma _{2}^{2}}{n}}. \end{aligned}$$

Therefore,

$$\begin{aligned} T_{\phi }\left( \delta _{0}\right)&=\frac{nm\sigma _{1}^{-2}\left( \overline{Y}-\overline{X}-\delta _{0}\right) }{\frac{\sigma _{1}^{2}}{m} +\frac{\sigma _{2}^{2}}{n}}(-1)\left( \overline{X}-\overline{Y}+\delta _{0}\right) \sigma _{2}^{-2}\nonumber \\&=\frac{mn}{m+n}\left( \overline{X}-\left( \overline{Y}-\delta _{0}\right) \right) ^{2}\sigma _{1}^{-2}\sigma _{2}^{-2}\left( \frac{m\sigma _{1} ^{-2}+n\sigma _{2}^{-2}}{m+n}\right) ^{-1}+o_{p}(1)\nonumber \\&=\frac{1}{\frac{m}{m+n}\sigma _{2}^{2}+\frac{n}{m+n}\sigma _{1}^{2}}\frac{mn}{m+n}\left( \overline{X}-\left( \overline{Y}-\delta _{0}\right) \right) ^{2}+o_{p}(1). \end{aligned}$$
(38)

Now we have,

$$\begin{aligned}&\sqrt{m}\left( \overline{X}-\mu \right) \underset{m\rightarrow \infty }{\overset{\mathcal {L}}{\rightarrow }}\mathcal {N}(0,\sigma _{1}^{2}),\\&\sqrt{n}\left( \overline{Y}-\left( \mu -\delta _{0}\right) \right) \underset{n\rightarrow \infty }{\overset{\mathcal {L}}{\rightarrow }} \mathcal {N}(0,\sigma _{2}^{2}). \end{aligned}$$

and

$$\begin{aligned}&\sqrt{\frac{mn}{m+n}}\left( \overline{X}-\mu \right) \underset{m,n\rightarrow \infty }{\overset{\mathcal {L}}{\rightarrow }} \mathcal {N}(0,\left( 1-\nu \right) \sigma _{1}^{2}).\\&\sqrt{\frac{mn}{m+n}}\left( \overline{Y}-\left( \mu +\delta _{0}\right) \right) \underset{m,n\rightarrow \infty }{\overset{\mathcal {L}}{\rightarrow } }\mathcal {N}(0,\nu \sigma _{2}^{2}), \end{aligned}$$

where is such that (2). Hence

$$\begin{aligned} \sqrt{\frac{mn}{m+n}}\left( \overline{X}-\overline{Y}+\delta _{0}\right) \underset{m,n\rightarrow \infty }{\overset{\mathcal {L}}{\rightarrow }} \mathcal {N}\left( 0,\left( 1-\nu \right) \sigma _{1}^{2}+\nu \sigma _{2}^{2}\right) , \end{aligned}$$

from which is obtained

$$\begin{aligned} \sqrt{\frac{1}{\frac{m}{m+n}\sigma _{2}^{2}+\frac{n}{m+n}\sigma _{1}^{2}}} \sqrt{\frac{mn}{m+n}}\left( \overline{X}-\overline{Y}+\delta _{0}\right) \underset{m,n\rightarrow \infty }{\overset{\mathcal {L}}{\rightarrow }} \mathcal {N}(0,1) \end{aligned}$$

and now the result follows.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balakrishnan, N., Martín, N. & Pardo, L. Empirical phi-divergence test statistics for the difference of means of two populations. AStA Adv Stat Anal 101, 199–226 (2017). https://doi.org/10.1007/s10182-017-0289-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10182-017-0289-0

Keywords

Mathematics Subject Classification

Navigation