Skip to main content
Log in

Analysis of discrete data by Conway–Maxwell Poisson distribution

  • Original Paper
  • Published:
AStA Advances in Statistical Analysis Aims and scope Submit manuscript

Abstract

In this paper, we further study the Conway–Maxwell Poisson distribution having one more parameter than the Poisson distribution and compare it with the Poisson distribution with respect to some stochastic orderings used in reliability theory. Likelihood ratio test and the score test are developed to test the importance of this additional parameter. Simulation studies are carried out to examine the performance of the two tests. Two examples are presented, one showing overdispersion and the other showing underdispersion, to illustrate the procedure. It is shown that the COM-Poisson model fits better than the generalized Poisson distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Atkinson, A.C., Yeh, L.: Inference for Sichel’s compound Poisson distribution. J. Am. Stat. Assoc. 77, 153–158 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Cancho, V.G., Castro, M., Rodrigues, J.: A Bayesian analysis of the Conway–Maxwell–Poisson cure rate model. Stat. Pap. 53(1), 165–176 (2012)

    Article  MATH  Google Scholar 

  • Consul, P.C., Jain, G.C.: On some interesting properties of the generalized Poisson distribution. Biometrische Z 15, 495–500 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  • Consul, P.C.: Generalized Poisson Distributions. Marcel Dekker, New York (1989)

    MATH  Google Scholar 

  • Gupta, P.L., Gupta, R.C., Tripathi, R.C.: On the monotonic properties of discrete failure rates. J. Stat. Plan. Inference 65, 255–268 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Gupta, P.L., Gupta, R.C., Ong, S.H., Srivastava, H.M.: A study of Hurwitz–Lerch-Zeta distribution with application. Appl. Math. Comput. 196(2), 521–531 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Gupta, P.L., Gupta, R.C., Tripathi, R.C.: Score test for zero inflated generalized Poisson regression model. Commun. Stat. Theory Methods 33(1), 47–64 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Gupta, P.L., Gupta, R.C., Tripathi, R.C.: Analysis of zero adjusted count data. Comput. Stat. Data Anal. 23, 207–218 (1996)

    Article  MATH  Google Scholar 

  • Gupta, R.C.: Modified power series distributions and some of its applications. Sankhya Ser. B 36, 288–298 (1974)

    MathSciNet  MATH  Google Scholar 

  • Gupta, R.C.: Maximum likelihood estimation of a modified power series distribution and some of its applications. Commun. Stat. Theory Methods 4, 689–697 (1975)

    MATH  Google Scholar 

  • Gupta, R.C., Ong, S.H.: A new generalization of the negative binomial distribution. Comput. Stat. Data Anal. 45(2), 287–300 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Gupta, R.C., Ong, S.H.: Analyses of long-tailed count data by Poisson mixtures. Commun. Stat. Theory Methods 34(3), 557–573 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Hasselblad, V.: Estimation of finite mixtures of distributions from the exponential family. J. Am. Stat. Assoc. 64, 1459–1471 (1969)

    Article  Google Scholar 

  • Kadane, J.B., Krishan, R., Shmueli, G.: A data disclosure policy for count data based on the COM-Poisson distribution. Manag. Sci. 52(10), 1610–1617 (2006a)

    Article  Google Scholar 

  • Kadane, J.B., Shmeuli, G., Munka, T.P., Borle, S., Boatwright, P.: Conjugate analysis of the Conway–Maxwell–Poisson distribution. Bayesian Anal. 2(2), 363–374 (2006b)

    Article  Google Scholar 

  • Kokonendji, C.C., Mizere, D., Balakrishnan, N.: Connections of the Poisson weight function to overdispersion and underdispersion. J. Stat. Plan. Inference 138, 1287–1296 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Kemp, A.W.: Classes of discrete lifetime distributions. Commun. Stat. Theory Methods 33, 3069–3093 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, P.A., Ong, S.H., Srivastava, H.M.: Some integrals of products of Laguerre polynomials. Int. J. Comput. Math. 78, 303–321 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Metropolis, N., Rosenbluth, A.W., Rosenbluth, M., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)

    Article  Google Scholar 

  • Minka, T.P., Shmueli, G, Kadane, J.B., Borle, S., Boatwright, P.: Computing with the COM-Poisson distribution. Technical Report #776, Department of Statistics, Carnegie Mellon University. http://www.stat.cmu.edu/tr/tr776/tr776.html (2003)

  • Mullahay, J.: Heterogeneity, excess zeros, and the structure of count data models. J. Appl. Econ. 12, 337–350 (1997)

    Article  Google Scholar 

  • Ng, C.M., Ong, S.H., Srivastava, H.M.: Parameter estimation by Hellinger type distance for multivariate distributions based on probability generating functions. Appl. Math. Model. 37, 7374–7385 (2013)

    Article  MathSciNet  Google Scholar 

  • Ord, J.K., Whitmore, G.A.: The Poisson-inverse gaussian distribution as a model for species abundance. Commun. Stat. Theory Methods 15, 853–871 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Rodrigues, J., Castro, M., Cancho, V.G., Balakrishnan, N.: COM Poisson cure rate survival models and an application to a cutaneous melanoma data. J. Stat. Plan. Inference 139, 3605–3611 (2009)

    Article  MATH  Google Scholar 

  • Rueda, R., O’Reilly, F.: Tests of fit for discrete distributions based on the probability generating function. Commun. Stat. Simul. Comput. 28(1), 259–274 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Shaked, M., Shanthikumar, J.G.: Stochastic Orders. Springer, Berlin, Heidelberg, New York (2007)

    Book  MATH  Google Scholar 

  • Shmueli, G., Minka, T.P., Kadane, J.B., Borle, S., Boatwright, S.: A useful distribution for fitting discrete data-revival of the Conway–Maxwell–Poisson distribution. Appl. Stat. 54(Part 1), 127–142 (2005)

    MathSciNet  MATH  Google Scholar 

  • Sim, S.Z., Ong, S.H.: Parameter estimation for discrete distributions by generalized Hellinger-type divergence based on probability generating function. Commun. Stat. Simul. Comput. 39, 305–314 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Steutel, F.W.: Logconcave and log-convex distributions. In: Kotz, S., Johonson, N.L., Read, C.B. (eds.) Encyclopedia of Statistical Sciences, vol. 5, pp. 116–117. Wiley, New york (1985)

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to the referees for some useful comments which enhanced the presentation. S. Z. Sim and S. H. Ong wish to acknowledge support for parts of this research from the Ministry of Higher Education, Malaysia through the Fundamental Research Grant Scheme FP010-2013A, and University of Malaya’s Research Grant Scheme RP009A-13AFR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh C. Gupta.

Appendix

Appendix

The Rao’s score test statistic is given by

$$\begin{aligned} T=VI^{-1} V^{T}, \end{aligned}$$

where \(V\) is the score vector and \(I\) is the information matrix. The score vector and the information matrix, obtained by evaluating the derivative of the log-likelihood function, \(\ln L\) under the null hypothesis, are given by

$$\begin{aligned} V=\left( {\frac{\partial \ln L}{\partial \nu }} ,{\frac{\partial \ln L}{\partial \theta }} \right) , \end{aligned}$$
$$\begin{aligned} I=- \left[ \begin{array}{ll} E\left[ {\frac{\partial ^{2} \ln L}{\partial \nu ^{2}}} \right] &{} E\left[ {\frac{\partial ^{2} \ln L}{\partial \theta \partial \nu }} \right] \\ E\left[ {\frac{\partial ^{2} \ln L}{\partial \theta \partial \nu }} \right] &{} E\left[ {\frac{\partial ^{2} \ln L}{\partial \theta ^{2}}} \right] \end{array} \right] . \end{aligned}$$

The likelihood score functions, \({\frac{\partial \ln L}{\partial \theta }}\) and \({\frac{\partial \ln L}{\partial \nu }}\) are given by (11) and (12). The second-order partial derivatives of the probability mass function are

$$\begin{aligned} {\frac{\partial ^{2}\ln P(X=x)}{\partial \theta ^{2}}}&= -\frac{x}{\theta ^{2}}+ \frac{\displaystyle \left( \sum \nolimits _{j=1}^{\infty }{\frac{j\theta ^{j-1}}{(j!)^{\nu }}}\right) ^{2}}{\displaystyle \left( \sum \nolimits _{j=0}^{\infty }{\frac{\theta ^{j}}{(j!)^{\nu }}}\right) ^{2}} -\frac{\left( {\displaystyle {\sum \nolimits _{j=2}^{\infty }{\frac{(j-1)j\theta ^{j-2}}{(j!)^{\nu }}}}}\right) }{\displaystyle {\sum \nolimits _{j=0}^{\infty }\frac{\theta ^{j}}{(j!)^{\nu }}}},\\ {\frac{\partial ^{2}\ln P(X=x)}{\partial \nu ^{2}}} \!&= \! \frac{{\displaystyle \left( \sum \nolimits _{j=2}^{\infty }\frac{-\theta ^{j}}{(j!)^{\nu }}\ln (j!)\right) ^{2}\!-\!\left( \sum \nolimits _{j=0}^{\infty }\frac{\theta ^{j}}{(j!)^{\nu }}\right) \sum \nolimits _{j=2}^{\infty }\frac{\theta ^{j}}{(j!)^{\nu }}\ln (j!)^{2}}}{{\displaystyle \left( \sum \nolimits _{j=0}^{\infty }\frac{\theta ^{j}}{(j!)^{\nu }}^{2}\right) }},\\ {\frac{\partial ^{2}\ln P(X=x)}{\partial \nu \partial \theta }}&= \frac{1}{{\displaystyle \left( \sum \nolimits _{j=0}^{\infty }\frac{\theta ^{j}}{(j!)^{\nu } }\right) ^{2}}}\left\{ \sum _{j=0}^{\infty }\frac{\theta ^{j}}{(j!)^{\nu } }\left( \sum _{j=2}^{\infty }\frac{j\theta ^{j-1}}{(j!)^{\nu }}\ln (j!)\right) \right. \\&\left. \quad -\left( \sum \nolimits _{j=1}^{\infty }\frac{j\theta ^{j-1}}{(j!)^{\nu } }\right) \left( \sum \nolimits _{j=2}^{\infty }\frac{\theta ^{j}}{(j!)^{\nu }} \ln (j!)\right) \right\} . \end{aligned}$$

The LRT requires estimation of the models under the null and alternative hypotheses. By comparing the log-likelihood scores under the null and alternative hypotheses, the LRT gives evidence whether the deviation of one model from the other is statistically significant. The LR test statistic is

$$\begin{aligned} \mathrm {LR}=-2\ln \left( {\frac{L(\hat{\beta }^{*} ;x)}{L(\hat{\beta };x)}} \right) , \end{aligned}$$

where \(\hat{\beta }^{*}\) is the restricted ML estimator (null) and \(\hat{\beta }\) is the unrestricted ML estimator (alternative).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, R.C., Sim, S.Z. & Ong, S.H. Analysis of discrete data by Conway–Maxwell Poisson distribution. AStA Adv Stat Anal 98, 327–343 (2014). https://doi.org/10.1007/s10182-014-0226-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10182-014-0226-4

Keywords

Navigation