Skip to main content
Log in

Vacuum pyrolysis of polymeric wastes containing hazardous cyano groups

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Vacuum pyrolysis of polymeric wastes containing hazardous cyano groups was studied using low temperature pyrolysis mass spectrometry. Specifically, the study analyzed the presence of toxic compounds among the pyrolysis products. The polymers were pyrolyzed directly in the solid probe of a quadruple mass spectrometer within an ion source at a pressure of 10−6 Torr and then sorted by quadrupole mass analyzer. Polyethyl cyanoacrylate degrades by depolymerization, mostly into the ethyl cyanoacrylate monomer units. The degradation of polyurethane produces nonpolymeric urethane, isocyanates, amines and ethers. Polyacrylonitrile degrades via a depolymerization pathway into oligonitriles, acrylonitrile, ammonia and hydrogen cyanide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pinto F, Costa P, Gulyurtlu I, Cabrita I (1999) Pyrolysis of plastic wastes. 1. Effect of plastic waste composition on product yield. J Anal Appl Pyrolysis 51:39–55

    Article  Google Scholar 

  2. Greena A, Sadrameli S (2004) Analytical representations of experimental polyethylene pyrolysis yields. J Anal Appl Pyrolysis 72:329–335

    Article  Google Scholar 

  3. Miskolczi N, Bartha L, Bartha L, Deak G, Jover B (2004) Thermal degradation of municipal plastic waste for production of fuel-like hydrocarbons. Polym Degrad Stab 86:357–366

    Article  Google Scholar 

  4. Miskolczia N, Barthaa L, Deaka G, Joverb B, Kallo D (2004) Thermal and thermo-catalytic degradation of high-density polyethylene waste. J Anal Appl Pyrolysis 72:235–242

    Google Scholar 

  5. Demirbas A (2004) Pyrolysis of municipal plastic wastes for recovery of gasoline-range hydrocarbons. J Anal Appl Pyrolysis 72:97–102

    Article  Google Scholar 

  6. Mastral J, Berrueco C, Ceamanos J (2007) Modelling of the pyrolysis of high density polyethylene: product distribution in a fluidized bed reactor. J Anal Appl Pyrolysis 79:313–322

    Article  Google Scholar 

  7. Lee KH (2007) Pyrolysis of municipal plastic wastes separated by difference of specific gravity. J Anal Appl Pyrolysis 79:362–367

    Article  Google Scholar 

  8. Miranda R, Pakdel H, Roc C, Vasile C (2001) Vacuum pyrolysis of commingled plastics containing PVC II. Product analysis. Polym Degrad Stab 73:47–67

    Article  Google Scholar 

  9. Bhaskar T, Tanabe M, Muto A, Sakata Y, Liu C, Chen M, Chao C (2005) Analysis of chlorine distribution in the pyrolysis products of poly(vinylidene chloride) mixed with polyethylene, polypropylene. Polym Degrad Stab 89:38–42

    Article  Google Scholar 

  10. Tang C, Wang Y, Zhou Q (2003) Catalytic effect of Al–Zn composite catalyst on the degradation of PVC-containing polymer mixtures into pyrolysis oil Zheng. Polym Degrad Stab 81:89–94

    Article  Google Scholar 

  11. Montaudo G, Puglisi C, Samperi E (1993) Chemical reactions occurring in the thermal treatment of polymer blend investigated by direct pyrolysis mass spectrometry. J Polym Sci A Polym Chem 31:13

    Article  Google Scholar 

  12. Wikipedia website. http://en.wikipedia.org/wiki/ (5 October 2011)

  13. Toriumi M, Raslan F, Friedman M et al (1990) Histotoxicity of cyanoacrylate tissue adhesives. A comparative study. Arch Otolaryngol Head Neck Surg 116:546

    Article  Google Scholar 

  14. Pawar R, Sarda S, Borade R, Jadhav A, Dakea S, Domb A (2008) Cyano Acrylate polymers in medical applications. Recent Patents Mater Sci 1:186–199

    Article  Google Scholar 

  15. Bello D, Woskie S, Streicher R, Liu Y, Stowe M, Eisen E, Ellenbecker M, Sparer J, Youngs F, Cullen M, Redlich C (2004) Polyisocyanates in occupational environments: a critical review of exposure limits and metrics. Am J Ind Med 46:480–491

    Article  Google Scholar 

  16. Wakefield J (2010) A toxicological review of the products of combustion. Health protection Agency CHAPD HQ

  17. Blazso M, Varhegyi G, Jakab E (1980) Pyrolysis-gas chromatography of styrene–acrylonitrile copolymers: calculation of kinetic parameters and sequence distribution. J Anal Appl Pyrolysis 2:177–185

    Article  Google Scholar 

  18. Surianaryanan M, Vijayaraghavan R, Raghavan V (1998) Spectroscopic investigations of polyacrylonitrile thermal degradation. J Polym Sci A Polym Chem 36:2503

    Article  Google Scholar 

  19. Zoller L, Johnston V (1997) Composition and microstructure of acrylonitrile–butadiene copolymers by pyrolysis photoionization mass spectrometry. Anal Chem 69:3791

    Article  Google Scholar 

  20. Wakefield J (2007) Acrylonitrile. Toxicological overview. Health Protection Agency, CHAPD HQ

  21. Pritchard J. (2007) Hydrogen cyanide. Toxicological overview. Health Protection Agency, CHAPD HQ

  22. Pritchard J (2007) Ammonia. Toxicological overview. Health Protection Agency, CHAPD HQ

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayed M. Badawy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badawy, S.M. Vacuum pyrolysis of polymeric wastes containing hazardous cyano groups. J Mater Cycles Waste Manag 15, 218–222 (2013). https://doi.org/10.1007/s10163-012-0113-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-012-0113-6

Keywords

Navigation