Skip to main content
Log in

Abstract

A new concept for the recycling of poly(vinyl chloride) (PVC) has been introduced, including the dehydrochlorination of PVC in ethylene glycol (EG) with NaOH as a reactant, the subsequent separation of NaCl from EG by electrodialysis, and the recovery of chlorine for the synthesis of new PVC. In this work, the separation of NaCl by electrodialysis was investigated. About 98 % of the salt were recovered from EG, with less than 10 % of the EG permeating the membranes after 5 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Zevenhoven R, Axelsen EP, Hupa M (2002) Pyrolysis of waste-derived fuel mixtures containing PVC. Fuel 81:507–510

    Article  Google Scholar 

  2. Zheng X-G, Tang L-H, Zhang N, Gao Q-H, Zhang C-F, Zhu Z-B (2003) Dehydrochlorination of PVC materials at high temperature. Energ Fuel 17:896–900

    Article  Google Scholar 

  3. Zhou Q, Lan W, Du A, Wang Y, Yang J, Wu Y, Yang K, Wang X (2008) Lanthania promoted MgO: simultaneous highly efficient catalytic degradation and dehydrochlorination of polypropylene/polyvinyl chloride. Appl Catal B 80:141–146

    Article  Google Scholar 

  4. López A, de Marco I, Caballero BM, Laresgoiti MF, Adrados A (2011) Dechlorination of fuels in pyrolysis of PVC containing plastic wastes. Fuel Process Technol 92:253–260

    Article  Google Scholar 

  5. Bhaskar T, Kaneko J, Muto A, Sakata Y, Jakab E, Matsui T, Uddin MA (2004) Pyrolysis studies of PP/PE/PS/PVC/HIPS-Br plastics mixed with PET and dehalogenation (Br, Cl) of the liquid products. J Anal Appl Pyrolysis 72:27–33

    Article  Google Scholar 

  6. Shin S-M, Yoshioka T, Okuwaki A (1998) Dehydrochlorination behavior of rigid PVC pellet in NaOH solutions at elevated temperature. Polym Degrad Stab 61:349–353

    Article  Google Scholar 

  7. Shin S-M, Yoshioka T, Okuwaki A (1998) Dehydrochlorination behavior of flexible PVC pellets in NaOH solutions at elevated temperature. J Appl Polym Sci 67:2171–2177

    Article  Google Scholar 

  8. Yoshioka T, Kameda T, Imai S, Okuwaki A (2008) Dechlorination of poly(vinyl chloride) using NaOH in ethylene glycol under atmospheric pressure. Polym Degrad Stab 93:1138–1141

    Article  Google Scholar 

  9. Kameda T, Ono M, Grause G, Mizoguchi T, Yoshioka T (2009) Chemical modification of poly(vinyl chloride) by nucleophilic substitution. Polym Degrad Stab 94:107–112

    Article  Google Scholar 

  10. Barragán VM, Ruíz-Bauzá C, Villaluenga JPG, Seoane B (2004) On the methanol–water electroosmotic transport in a Nafion membrane. J Membr Sci 236:109–120

    Article  Google Scholar 

  11. Kameche M, Xu F, Innocent C, Pourcelly G, Derriche Z (2007) Characterisation of Nafion®117 membrane modified chemically with a conducting polymer: an application to the demineralisation of sodium iodide organic solutions. Sep Purif Technol 52:497–503

    Article  Google Scholar 

  12. Cheng K-K, Cai B-Y, Zhang J-A, Ling H-Z, Zhou Y-J, Ge J-P, Xu J-M (2008) Sugarcane bagasse hemicellulose hydrolysate for ethanol production by acid recovery process. Biochem Eng J 38:105–109

    Article  Google Scholar 

  13. Cardona CA, Quintero JA, Paz IC (2010) Production of bioethanol from sugarcane bagasse: status and perspectives. Bioresource Technol 101:4754–4766

    Article  Google Scholar 

  14. Sata T, Mine K, Matsusaki K (1998) Change in transport properties of anion-exchange membranes in the presence of ethylene glycols in electrodialysis. J Colloid Interface Sci 202:348–358

    Article  Google Scholar 

  15. Sata T, Mine K, Tagami Y, Higa M, Matsusaki K (1998) Changing permselectivity between halogen ions through anion exchange membranes in electrodialysis by controlling hydrophilicity of the membranes. J Chem Soc Faraday Trans 94:147–153

    Article  Google Scholar 

  16. Gärtner RS, Wilhelm FG, Witkamp GJ, Wessling M (2005) Regeneration of mixed solvent by electrodialysis: selective removal of chloride and sulfate. J Membr Sci 250:113–133

    Article  Google Scholar 

  17. Sata T, Mine K, Higa M (1998) Change in permselectivity between sulfate and chloride ions through anion exchange membrane with hydrophilicity of the membrane. J Membr Sci 141:137–144

    Article  Google Scholar 

  18. Sata T, Tanimoto M, Kawamura K, Matsusaki K (1999) Transport properties of cation exchange membranes in the presence of ether compounds in electrodialysis. J Colloid Interface Sci 219:310–319

    Article  Google Scholar 

  19. Ethève J, Huguet P, Innocent C, Bribes JL, Pourcelly G (2001) Electrochemical and Raman spectroscopy study of a Nafion perfluorosulfonic membrane in organic solvent–water mixtures. J Phys Chem B 105:4151–4154

    Article  Google Scholar 

  20. Gärtner RS, Witkamp GJ (2005) Regeneration of mixed solvent by ion exchange resin: selective removal of chloride and sulfate. Sep Sci Technol 40:2391–2410

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiaki Yoshioka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kameda, T., Fukushima, S., Shoji, C. et al. Electrodialysis for NaCl/EG solution using ion-exchange membranes. J Mater Cycles Waste Manag 15, 111–114 (2013). https://doi.org/10.1007/s10163-012-0098-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-012-0098-1

Keywords

Navigation