Skip to main content
Log in

Natural Compounds as Occult Ototoxins? Ginkgo biloba Flavonoids Moderately Damage Lateral Line Hair Cells

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Several drugs, including aminoglycosides and platinum-based chemotherapy agents, are well known for their ototoxic properties. However, FDA-approved drugs are not routinely tested for ototoxicity, so their potential to affect hearing often goes unrecognized. This issue is further compounded for natural products, where there is a lack of FDA oversight and the manufacturer is solely responsible for ensuring the safety of their products. Natural products such as herbal supplements are easily accessible and commonly used in the practice of traditional eastern and alternative medicine. Using the zebrafish lateral line, we screened a natural products library to identify potential ototoxins. We found that the flavonoids quercetin and kaempferol, both from the Gingko biloba plant, demonstrated significant ototoxicity, killing up to 30 % of lateral line hair cells. We then examined a third Ginkgo flavonoid, isorhamnetin, and found similar levels of ototoxicity. After flavonoid treatment, surviving hair cells demonstrated reduced uptake of the vital dye FM 1-43FX, suggesting that the health of the remaining hair cells was compromised. We then asked if these flavonoids enter hair cells through the mechanotransduction channel, which is the site of entry for many known ototoxins. High extracellular calcium or the quinoline derivative E6 berbamine significantly protected hair cells from flavonoid damage, implicating the transduction channel as a site of flavonoid uptake. Since known ototoxins activate cellular stress responses, we asked if reactive oxygen species were necessary for flavonoid ototoxicity. Co-treatment with the antioxidant D-methionine significantly protected hair cells from each flavonoid, suggesting that antioxidant therapy could prevent hair cell loss. How these products affect mammalian hair cells is still an open question and will be the target of future experiments. However, this research demonstrates the potential for ototoxic damage caused by unregulated herbal supplements and suggests that further supplement characterization is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  • Alharazneh A, Luk L, Huth M, Monfared A, Steyger PS, Cheng AG, Ricci AJ (2011) Functional hair cell mechanotransducer channels are required for aminoglycoside ototoxicity. PLoS One 6(7):e22347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bent S (2008) Herbal medicine in the United States: review of efficacy, safety, and regulation. J of Gen Intern Med 23:854–859

    Article  Google Scholar 

  • Bereiter-Hahn J (1976) Dimethylaminostyrylmethylpyridiniumiodine (DASPMI) as a fluorescent probe for mitochondria in situ. Biochim Biophys Acta 423:1–14

    Article  CAS  PubMed  Google Scholar 

  • Bombrun A, Gerber P, Casi G, Terradillos O, Antonsson B, Halazy S (2003) 3,6-dibromocarbazole piperazine derivatives of 2-propanol as first inhibitors of cytochrome c release via Bax channel modulation. J of Medicinal Chem 46:4365–4368. doi:10.1021/jm034107j

    Article  CAS  Google Scholar 

  • Borghi C, Modugno G, Pirodda A (2002) Possible role of HMG-CoA reductase inhibitors for the treatment of sudden sensorineural hearing loss (SSHL). Med Hypotheses 58:399–402

    Article  CAS  PubMed  Google Scholar 

  • Calder PC (2015) Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance. Biochim Biophys Acta 1854:469–484

    Article  Google Scholar 

  • Campbell N, Clark JP, Stecher VJ, Thomas JW, Callanan AC, Donnelly BF, Goldstein I, Kaminetsky JC (2013) Adulteration of purported herbal and natural sexual performance enhancement dietary supplements with synthetic phosphodiesterase type 5 inhibitors. J Sex Med 10:1842–1849

    Article  PubMed  Google Scholar 

  • Chen AY, Chen YC (2013) A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem 138:2099–2107

    Article  CAS  PubMed  Google Scholar 

  • Chirumbolo S (2013) Quercetin and cancer prevention and therapy. Integr Cancer Ther 12(2):97–102

    Article  CAS  PubMed  Google Scholar 

  • Chiu LL, Cunningham LL, Raible DW, Rubel EW, Ou HC (2008) Using the zebrafish lateral line to screen for ototoxicity. J Assoc Res Otolaryngol 9:178–190

    Article  PubMed  PubMed Central  Google Scholar 

  • Cialdella-Kam L, Nieman DC, Sha W, Meaney MP, Knab AM, Shanely RA (2012) Dose-response to 3 months of quercetin-containing supplements on metabolite and quercetin conjugate profile in adults. Br J Nutr 109(11):1923–1933

    Article  PubMed  Google Scholar 

  • Coffin AB, Brignull H, Raible DW, Rubel EW (2014) Hearing loss, protection, and regeneration in the larval zebrafish lateral line. In: Coombs S, Bleckmann H, Fay RR, Popper AN (eds) The lateral line system. Springer, New York, pp. 313–347

    Google Scholar 

  • Coffin AB, Reinhart K, Owens K, Raible D, Rubel E (2009) Extracellular divalent cations modulate aminoglycoside-induced hair cell death in the zebrafish lateral line. Hear Res 253:42–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coffin AB, Rubel EW, Raible DW (2013a) Bax, Bcl2, and p53 differentially regulate neomycin- and gentamicin-induced hair cell death in the zebrafish lateral line. J Assoc Res Otolaryngol 14:645–659

    Article  PubMed  PubMed Central  Google Scholar 

  • Coffin AB, Williamson KL, Mamiya A, Raible DW, Rubel EW (2013b) Profiling drug induced cell death pathways in the zebrafish lateral line. Apoptosis 18:393–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coffin AB, Kelley M, Manley GA, Popper AN (2004) Evolution of sensory hair cells. In: Manley GA, Popper AN, Fay RR (eds) Evolution of the vertebrate auditory system. Springer, New York, pp. 55–94

    Chapter  Google Scholar 

  • Coombs S, Görner P, Münz H (1989) The mechanosensory lateral line. Springer, New York

    Book  Google Scholar 

  • Cunningham LL, Matsui JI, Warchol ME, Rubel EW (2004) Overexpression of Bcl-2 prevents neomycin-induced hair cell death and caspase-9 activation in the adult mouse utricle in vitro. J of Neurobio 60:89–100

    Article  CAS  Google Scholar 

  • Dai W, Gao Q, Qiu J, Yuan J, Wu G, Shen G (2015) Quercetin induces apoptosis and enhances 5-FU therapeutic efficacy in hepatocellular carcinoma. Tumour Biol 1:1–7. doi:10.1007/s13277-015-4501-0

    Google Scholar 

  • Dinh C, Goncalves S, Bas E, Water T, Zine A (2015) Molecular regulation of auditory hair cell death and approaches to protect sensory receptor cells and/or stimulate repair following acoustic trauma. Front in Cell Neuro 9:96. doi:10.3389/fncel.2015.00096

    Google Scholar 

  • Donnapee S, Li J, Yang X, Ge AH, Donkor PO, Gao XM, Chang YX (2014) Cuscuta chinensis Lam.: a systematic review on ethnopharmacology, phytochemistry and pharmacology of an important traditional herbal medicine. J Ethnopharmacol 157:292–308

    Article  CAS  PubMed  Google Scholar 

  • Drieu K (1986) Preparation and definition of Ginkgo biloba extract. Presse Med 15:1455–1457

    CAS  PubMed  Google Scholar 

  • Du G, Lin H, Yang Y, Zhang S, Wu X, Wang M, Han G (2010) Dietary quercetin combining intratumoral doxorubicin injection synergistically induces rejection of established breast cancer in mice. Intl Immunopharmacol 10:819–826

    Article  CAS  Google Scholar 

  • Duo J, Ying GG, Wang GW, Zhang L (2012) Quercetin inhibits human breast cancer cell proliferation and induces apoptosis via Bcl-2 and Bax regulation. Mol Med Reports 5:1453–1456

    CAS  Google Scholar 

  • Dy GK, Bekele L, Hanson LJ, Furth A, Mandrekar S, Sloan JA, Adjei AA (2004) Complementary and alternative medicine use by patients enrolled onto phase I clinical trials. J of Clin Oncol 22:4810–4815

    Article  Google Scholar 

  • Eatock RA (2000) Adaptation in hair cells. Ann Rev Neuro 23:285–314

    Article  CAS  Google Scholar 

  • Esterberg R, Hailey DW, Coffin AB, Raible DW, Rubel EW (2013) Disruption of intracellular calcium regulation is integral to aminoglycoside-induced hair cell death. J Neurosci 33(17):7513–7525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esterberg R, Hailey DW, Rubel EW, Raible DW (2014) ER-mitochondrial calcium flow underlies vulnerability of mechanosensory hair cells to damage. J Neurosci 32(29):9703–9719

    Article  Google Scholar 

  • Evans P, Halliwell B (1999) Free radicals and hearing: cause, consequence, and criteria. Annals NY Acad of Sci 884:19–40

    Article  CAS  Google Scholar 

  • Fu R, Zhang Y, Peng T, Guo Y, Chen F (2015) Phenolic composition and effects on allergic contact dermatitis of phenolic extracts Sapium sebiferum (L.) Roxb. leaves. J Ethnopharmacol 162:176–180

    Article  CAS  PubMed  Google Scholar 

  • Gale JE, Marcotti W, Kennedy HJ, Kros CJ, Richardson GP (2001) FM1-43 dye behaves as a permeant blocker of the hair-cell mechanotransducer channel. J Neurosci 21:7013–7025

    CAS  PubMed  Google Scholar 

  • Gautheir S, Schlaefke S (2014) Efficacy and tolerability of Ginkgo biloba extract EGb 761 in dementia: a systematic review and meta-analysis of randomized placebo-controlled trials. Clin Interv Aging 9:2065–2077

    Article  Google Scholar 

  • Harris JA, Cheng AG, Cunningham LL, MacDonald G, Raible DW, Rubel EW (2003) Neomycin-induced hair cell death and rapid regeneration in the lateral line of zebrafish (Danio rerio). J Assoc Res Otolaryngol 4:219–234

    Article  PubMed  PubMed Central  Google Scholar 

  • Hauns B, Häring B, Köhler S, Mross K, Unger C (2001) Phase II study of combined 5-fluorouracil/Ginkgo biloba extract (GBE 761 ONC) therapy in 5-fluorouracil pretreated patients with advanced colorectal cancer. Phytother Res 15(1):34–38

    Article  CAS  PubMed  Google Scholar 

  • Heinonen T, Gaus W (2015) Cross matching observations on toxicological and clinical data for the assessment of tolerability and safety of Ginkgo biloba leaf extract. Toxicology 327:95–115

    Article  CAS  PubMed  Google Scholar 

  • Herrschaft H, Nacu A, Likhachev S, Sholomov I, Hoerr R, Schlaefke S (2012) Ginkgo biloba extract EGb 761® in dementia with neuropsychiatric features: a randomised, placebo-controlled trial to confirm the efficacy and safety of a daily dose of 240 mg. J Psychiatr Res 46:716–723

    Article  PubMed  Google Scholar 

  • Hirose Y, Simon JA, Ou HC (2011) Hair cell toxicity in anti-cancer drugs: evaluating an anti-cancer drug library for independent and synergistic toxic effects on hair cells using the zebrafish lateral line. J Assoc Res Otolaryngol 12:719–728

    Article  PubMed  PubMed Central  Google Scholar 

  • Hultcrantz M, Simonoska R, Stenberg A (2006) Estrogen and hearing: a summary of recent investigations. Acta Oaot-laryngol 126:10–14

    Article  CAS  Google Scholar 

  • Jiang B, Ma C, Motley T, Kronenberg F, Kennelly EJ (2011) Phytochemical fingerprinting to thwart black cohosh adulteration: a 15 Actaea species analysis. Phytochem Anal 22:339–351

    Article  CAS  PubMed  Google Scholar 

  • Jones DJ, Lamb JH, Verschoyle RD, Howells LM, Butterworth M, Lim CK, Ferry D, Farmer PB, Gescher AJ (2004) Characterization of metabolites of the putative cancer chemopreventive agent quercetin and their effect on cyclo-oxygenase activity. Br J Cancer 91(6):121301219

    Google Scholar 

  • Karsch-Völk M, Barrett B, Linde K (2015) Echinacea for preventing and treating the common cold. JAMA 313:618–619

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawashima Y, Géléoc GSG, Kurima K, Labay V, Lelli A, Asai Y, Makishima T, Wu DK, Della Santina CC, Holt JR, Griffith AJ (2011) Mechanotransduction in mouse inner ear hair cells requires transmembrane channel-like genes. J Clin Invest 121:4796–4809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YH, Lee YJ (2007) TRAIL apoptosis is enhanced by quercetin rhough Aky dephosphorylation. J Cell Biochem 100(4):998–1009

    Article  CAS  PubMed  Google Scholar 

  • Kruger M, Boney R, Ordoobadi AJ, Sommers TF, Trapani JG, Coffin AB (2016) Natural bizbenzoquinoline derivatives protect zebrafish lateral line sensory hair cells from aminoglycoside toxicity. Frontiers Cell Neurosci. doi:10.3389/fncel.2016.00083

    Google Scholar 

  • Lee JE, Nakagawa T, Kim TS, Iguchi F, Endo T, Kita T, Ito J (2004) Signaling pathway for apoptosis of vestibular hair cells of mice due to aminoglycosides. Acta Otolaryngol 124:69–74

    Article  Google Scholar 

  • Lee SK, Oh KH, Chung AY, Park HC, Lee SH, Kwon SY, Choi J (2015) Protective role of quercetin against cisplatin-induced hair cell damage in zebrafish embryos. Human & Experi Toxicol 34:1043–1052

    Article  CAS  Google Scholar 

  • Li C, Wang T, Zhang C, Xuan J, Su C, Wang Y (2016) Quercetin attenuates cardiomyocyte apoptosis via inhibition of JNK and p38 mitogen-activated protein kinase signaling pathways. Gene 577(2):275–280

    Article  CAS  PubMed  Google Scholar 

  • Little DP (2014) Authentication of Ginkgo biloba herbal dietary supplements using DNA barcoding. Genome 57:513–516

    Article  CAS  PubMed  Google Scholar 

  • Luo H, Daddysman MK, Rankin GO, Jiang B-H, Chen YC (2010) Kaempferol enhances cisplatin’s effect on ovarian cancer cells through promoting apoptosis caused by down regulation of cMyc. Cancer Cell Intl 10:16. doi:10.1186/1475-2867-10-16

    Article  Google Scholar 

  • Marcotti W, Netten S, Kros C (2005) The aminoglycoside antibiotic dihydrostreptomycin rapidly enters mouse outer hair cells through the mechano-electrical transducer channels. J Physiol 567:505–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metodiewa D, Jaiswal AK, Cenas N, Dickancaité E, Segura-Aguilar J (1999) Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product. Free Radical Bioand Med 26:107–116

    Article  CAS  Google Scholar 

  • Meyers JR, MacDonald RB, Duggan A, Lenzi D, Standaert DG, Corwin JT, Corey DP (2003) Lighting up the senses: FM1-43 loading of sensory cells through nonselective ion channels. J Neurosci 23:4054–4065

    CAS  PubMed  Google Scholar 

  • Miman MC, Ozturn O, Iraz M, Erdem T, Olmez E (2002) Amikacin ototoxicity enhanced by Ginkgo biloba extract (EGb 761). Hear Res 169:121–129

    Article  CAS  PubMed  Google Scholar 

  • Montgomery JC, Baker CF, Carton AG (1997) The lateral line can mediate rheotaxis in fish. Nature 390:960–963

    Article  Google Scholar 

  • Namdaran P, Reinhart KE, Owens KN, Raible DW, Rubel EW (2012) Identification of modulators of hair cell regeneration in the zebrafish lateral line. J Neurosci 32:3516–3528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • National Institute of Health (2015) Medline Plus: Herbal Medicine. Retrieved from: http://www.nlm.nih.gov/medlineplus/herbalmedicine.html

  • Nestel P, Clifton P, Colquhoun D, Noakes M, Mori TA, Sullivan D, Thomas B (2015) Indications for Omega-3 long chain polyunsaturated fatty acid in the prevention and treatment of cardiovascular disease. Heart Lung Circ 24:769–779

    Article  PubMed  Google Scholar 

  • Owens KN, Coffin AB, Hong LS, Bennett KOC, Rubel EW, Raible DW (2009) Response of mechanosensory hair cells of the zebrafish lateral line to aminoglycosides reveals distinct cell death pathways. Hear Res 253:32–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owens KN, Santos F, Roberts B, Linbo T, Coffin AB, Knisely AJ, Simon JA, Rubel EW, Rabile DW (2008) Identification of genetic and chemical modulators of zebrafish mechanosensory hair cell death. PLoS Genet 4(2):e1000020

    Article  PubMed  PubMed Central  Google Scholar 

  • Ou HC, Cunningham LL, Francis SP, Brandon CS, Simon JA, Raible DW, Rubel EW (2009) Identification of FDA-approved drugs and bioactives that protect hair cells in the zebrafish (Danio rerio) lateral line and mouse (Mus musculus) utricle. J Assoc Res Otolaryngol 10(2):191–203

    Article  PubMed  PubMed Central  Google Scholar 

  • Ou HC, Keating S, Wu P, Simon JA, Raible DW, Rubel EW (2012) Quinoline ring derivatives protect against aminoglycoside-induced hair cell death in the zebrafish lateral line. J Assoc Res Otolaryngol 13(6):759–770

    Article  PubMed  PubMed Central  Google Scholar 

  • Ou HC, Santos F, Raible DW, Simon JA, Rubel EW (2010) Drug screening for hearing loss: using the zebrafish lateral line to screen for drugs that prevent and cause hearing loss. Drug Discov Today 15:265–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfannenstiel SC, Praetorius M, Plinkert PK, Brough DE, Staecker H (2009) Bcl-2 gene therapy prevents aminoglycoside—induced degeneration of auditory and vestibular hair cells. Audiol Neurootol 14:254–266

    Article  CAS  PubMed  Google Scholar 

  • Raible DW, Kruse GJ (2000) Organization of the lateral line system in embryonic zebrafish. J of Comp Neurol 421:189–198

    Article  CAS  Google Scholar 

  • Rangel-Ordóñez L, Nöldner M, Schubert-Zsilavecz M, Wurglics M (2010) Plasma levels and distribution of flavonoids in rat brain after single and repeated doses of standardized Ginkgo biloba extract EGb 761®. Planta Med 76:1683–1690

    Article  PubMed  Google Scholar 

  • Rennekamp AJ, Peterson RT (2015) 15 years of zebrafish chemical screening. Curr Opin Chem Biol 24:58–70

    Article  CAS  PubMed  Google Scholar 

  • Ricci AJ, Fettiplace R (1998) Calcium permeation of the turtle hair cell mechanotransducer channel and its relation to the composition of endolymph. J Physiol 506:159–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizzi MD, Hirose K (2007) Aminoglycoside ototoxicity. Curr Opin Otolaryngol Head Neck Surg 15:352–357

    Article  PubMed  Google Scholar 

  • Ruiz LM, Salazar C, Jensen E, Ruiz PA, Tiznado W, Quintanilla RA, Barreto M, Elorza AA (2015) Quercetin affects erythropoiesis and heart mitochondrial function in mice. Oxidative Med Cell Longev 2015:836301

    Article  Google Scholar 

  • Rybak LP, Ramkumar V (2007) Ototoxicity. Kidney Int 72:931–935

    Article  CAS  PubMed  Google Scholar 

  • Sagit M, Korkmaz F, Gürgen S, Gundogdu R, Akcadag A, Ozcan I (2015) Quercetine attenuates the gentamicin-induced ototoxicity in a rat model. Intl J Ped Otorhinolaryngol 79:2109–2114

    Article  Google Scholar 

  • Sahu SC, Gray GC (1994) Kaempferol-induced nuclear DNA damage and lipid peroxidation. Cancer Lett 85:159–164

    Article  CAS  PubMed  Google Scholar 

  • Sampson JA, Duston J, Croll RP (2013) Superficial neuromasts facilitate non-visual feeding by larval striped bass (Morone saxatilis). J Exp Biol 216:3522–3530

    Article  CAS  PubMed  Google Scholar 

  • Santos F, MacDonald G, Rubel EW, Raible DW (2006) Lateral line hair cell maturation is a determinant of aminoglycoside susceptibility in zebrafish (Danio rerio). Hear Res 213:25–33

    Article  CAS  PubMed  Google Scholar 

  • Schacht J (1999) Antioxidant therapy attenuates aminoglycoside-induced hearing loss. Annals NY Aca of Sci 884:125–130

    CAS  Google Scholar 

  • Seligmann H, Podoshin L, Ben-David J, Fradis M, Goldsher M (1996) Drug-induced tinnitus and other hearing disorders. Drug Saf 14:198–212

    Article  CAS  PubMed  Google Scholar 

  • Sergi B, Fetoni AR, Ferraresi A, Troiani D, Azzena GB, Paludetti G, Maurizi M (2004) The role of antioxidants in protection from ototoxic drugs. Acta Otolaryngol 124:42–45

    Article  PubMed  Google Scholar 

  • Siegelin MD, Reuss DE, Habel A, Rami A, von Deilmling A (2009) Quercetin promotes degradation of surviving and thereby enhances death-receptor-mediated apoptosis in glioma cells. Neuro-Oncology 11(2):122–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solfrizzi V, Panza F (2015) Plant-based nutraceutical interventions against cognitive impairment and dementia: meta-analytic evidence of efficacy of a standardized Ginkgo biloba extract. J Alzheimers Dis 43(2):605–611

    CAS  PubMed  Google Scholar 

  • Sun J, Sun G, Meng X, Wang H, Luo Y, Qin M, Ma B, Wang M, Cai D, Guo P, Sun X (2013) Isorhamnetin protects against doxorubicin-induced cardiotoxicity in vivo and in vitro. PLoS One 8(5):e64526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teng BS, Lu YH, Wang ZT, Tao XY, Wei DZ (2006) In vitro anti-tumor activity of isorhamnetin isolated from Hippophae rhamnoides L. against BEL-7402 cells. Pharmacol Res 54:186–194

    Article  CAS  PubMed  Google Scholar 

  • Thomas AJ, Hailey DW, Stawicki TM, Wu P, Coffin AB, Rubel EW, Raible DW, Simon JA, Ou HC (2013) Functional mechanotransduction is required for cisplatin-induced hair cell death in the zebrafish lateral line. J Neurosci 33:4405–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ton C, Parng C (2005) The use of zebrafish for assessing ototoxic and otoprotective agents. Hear Res 208:79–88

    Article  CAS  PubMed  Google Scholar 

  • Uribe PM, Kawas LH, Harding JW, Coffin AB (2015) Hepatocyte growth factor mimetic protects lateral line hair cells from aminoglycoside exposure. Front Cell Neuro 9:3

    Google Scholar 

  • Vargas AJ, Sittadjody S, Thangasamy T, Mendoza EE, Limesand KH, Burd R (2011) Exploiting tyrosinase expression and activity in melanocytic tumors: quercetin and the central role of p53. Integr Cancer Ther 10(4):328–340

    Article  CAS  PubMed  Google Scholar 

  • Vicente-Torres MA, Schacht J (2006) A BAD link to mitochondrial cell death in the cochlea of mice with noise-induced hearing loss. J Neurosci Res 83:1564–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlasits AL, Simon JA, Raible DW, Rubel EW, Owens KN (2012) Screen of FDA-approved drug library reveals compounds that protect hair cells from aminoglycosides and cisplatin. Hear Res 294:153–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Gunten A, Schlaefke S, Überla K (2015) Efficacy of Ginkgo biloba extract EGb 761® in dementia with behavioural and psychological symptoms: a systematic review. World J Biol Psychiatry 27:1–12

    Google Scholar 

  • Vu AA, Nadaraja GS, Huth ME, Luk L, Kim J, Chai R, Ricci AJ, Cheng AG (2013) Integrity and regeneration of mechanotransduction machinery regulate aminoglycoside entry and sensory cell death. PLoS One 8:e54794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Steyger PS (2009) Trafficking of systemic fluorescent gentamicin into the cochlea and hair cells. J Assoc Res Otolaryngol 10:205–219

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei MC, Zong W-X, Cheng EH-Y, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, Korsmeyer SJ (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292:727–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westerfield M (2000) The zebrafish book: a guide for the laboratory use of zebrafish (Danio rerio). University of Oregon, Eugene

    Google Scholar 

  • Xiao T, Roeser T, Staub W, Baier H (2005) A GFP-based genetic screen reveals mutations that disrupt the architecture of the zebrafish retinotectal projection. Development 132:2955–2967

    Article  CAS  PubMed  Google Scholar 

  • Yang CH, Schrepfer T, Schacht J (2015) Age-related hearing impairment and the triad of acquired hearing loss. Front Cell Neurosci 9:276. doi:10.3389/fncel.2015.00276

    PubMed  PubMed Central  Google Scholar 

  • Yamashita D, Minami SB, Kanzaki S, Ogawa K, Miller JM (2008) Bcl-2 genes regulate noise-induced hearing loss. J Neurosci Res 86:920–928

    Article  CAS  PubMed  Google Scholar 

  • Yang TH, Young YH, Liu SH (2011) EGb 761 (Ginkgo biloba) protects cochlear hair cells against ototoxicity induced by gentamicin via reducing reactive oxygen species and nitric oxide-related apoptosis. J Nutr Biochem 22:886–894

    Article  PubMed  Google Scholar 

  • Zhang Q, Cheng G, Qiu H, Zhu L, Ren Z, Zha W, Liu L (2015) The p53-inducible gene 3 involved in flavonoid-induced cytotoxicity through the reactive oxygen species-mediated mitochondrial apoptotic pathway in human hepatoma cells. Food and Function 6:1518–1525

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Institutes of Health award R15DC013900 and Washington State University Vancouver funds to A.B.C. We thank Matthew Kruger, Travis Long, and Heather Wiedenhoft for experimental assistance and Chris Riso and Alex Young for fish husbandry expertise. We also thank two anonymous reviewers for the comments that significantly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nicole K. Smith or Allison B. Coffin.

Additional information

Sarah Neveux and Nicole K. Smith contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neveux, S., Smith, N.K., Roche, A. et al. Natural Compounds as Occult Ototoxins? Ginkgo biloba Flavonoids Moderately Damage Lateral Line Hair Cells. JARO 18, 275–289 (2017). https://doi.org/10.1007/s10162-016-0604-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-016-0604-6

Keywords

Navigation