Skip to main content
Log in

Finite-Element Modelling of the Acoustic Input Admittance of the Newborn Ear Canal and Middle Ear

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Admittance measurement is a promising tool for evaluating the status of the middle ear in newborns. However, the newborn ear is anatomically very different from the adult one, and the acoustic input admittance is different than in adults. To aid in understanding the differences, a finite-element model of the newborn ear canal and middle ear was developed and its behaviour was studied for frequencies up to 2000 Hz. Material properties were taken from previous measurements and estimates. The simulation results were within the range of clinical admittance measurements made in newborns. Sensitivity analyses of the material properties show that in the canal model, the maximum admittance and the frequency at which that maximum admittance occurs are affected mainly by the stiffness parameter; in the middle-ear model, the damping is as important as the stiffness in influencing the maximum admittance magnitude but its effect on the corresponding frequency is negligible. Scaling up the geometries increases the admittance magnitude and shifts the resonances to lower frequencies. The results suggest that admittance measurements can provide more information about the condition of the middle ear when made at multiple frequencies around its resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  • Aernouts J, Aerts JRM, Dirckx JJJ (2012) Mechanical properties of human tympanic membrane in the quasi-static regime from in situ point indentation measurements. Hear Res 290:45–54

    Article  PubMed  Google Scholar 

  • Agache PG, Monneur C, Leveque JL, De Rigal J (1980) Mechanical properties and Young’s modulus of human skin in vivo. Arch Dermatol Res 269:221–232

    Article  CAS  PubMed  Google Scholar 

  • Aibara R, Welsh JT, Puria S, Goode RL (2001) Human middle-ear sound transfer function and cochlear input impedance. Hear Res 152:100–109

    Article  CAS  PubMed  Google Scholar 

  • Akinpelu OV, Peleva E, Funnell WRJ, Daniel SJ (2014) Otoacoustic emissions in newborn hearing screening: a systematic review of the effects of different protocols on test outcomes. Int J Pediatr Otorhinolaryngol 78:711–717

    Article  PubMed  Google Scholar 

  • Alberti PW, Jerger JF (1974) Probe-tone frequency and the diagnostic value of tympanometry. Arch Otolaryngol 99:206–210

    Article  CAS  PubMed  Google Scholar 

  • American Academy of Pediatrics (2007) Year 2007 position statement: principles and guidelines for early hearing detection and intervention programs. Pediatrics 120:898

    Article  Google Scholar 

  • Andersen HC, Hansen CC, Neergaard E (1962) Experimental studies on sound transmission in the human ear. Acta Otolaryngol (Stockh) 54:511–520

    Article  CAS  Google Scholar 

  • Anson BJ, Donaldson JA (1992) Surgical anatomy of the temporal bone and ear, 4th edn. Saunders, Philadelphia

    Google Scholar 

  • Anthwal N, Thompson H (2016) The development of the mammalian outer and middle ear. J Anat 228:217–232

    Article  PubMed  Google Scholar 

  • Békésy GV (1949) The structure of the middle ear and the hearing of one’s own voice by bone conduction. J Acoust Soc Am 21:217–232

    Article  Google Scholar 

  • Cancura W (1979) On the elasticity of the ligamentum annulare 225:27–32

  • Chang KW, Vohr BR, Norton SJ, Lekas MD (1993) External and middle ear status related to evoked otoacoustic emission in neonates. Arch Otolaryngol Neck Surg 119:276–282

    Article  CAS  Google Scholar 

  • Cheng T, Dai C, Gan RZ (2007) Viscoelastic properties of human tympanic membrane. Ann Biomed Eng 35:305–314

    Article  PubMed  Google Scholar 

  • Cheng JT, Aarnisalo AA, Harrington E, del Socorro Hernandez-Montes M, Furlong C, Merchant SN, Rosowski JJ (2010) Motion of the surface of the human tympanic membrane measured with stroboscopic holography. Hear Res 263:66–77

  • Colletti V (1975) Methodologic observations on tympanometry with regard to the probe tone frequency. Acta Otolaryngol (Stockh) 80:54–60

    Article  CAS  Google Scholar 

  • do Couto CM, Carvallo RMM (2009) The effect external and middle ears have in otoacoustic emissions. Rev Bras Otorrinolaringol 75:15–23

    Article  Google Scholar 

  • Cowin SC (2001) Bone mechanics handbook, 2nd edn. CRC Press, New York

    Google Scholar 

  • Decraemer WF, Funnell WRJ (2008) Anatomical and mechanical properties of the tympanic membrane. Chronic Otitis Media Pathog Oriented Ther Manag

  • Decraemer WF, Khanna SM (2004) Measurement, visualization and quantitative analysis of human and cat middle ear

  • Decraemer W, Maes M, Vanhuyse V (1980) An elastic stress-strain relation for soft biological tissues based on a structural model. J Biomech 13:463–468

    Article  CAS  PubMed  Google Scholar 

  • Eby TL, Nadol JB Jr (1986) Postnatal growth of the human temporal bone implications for cochlear implants in children. Ann Otol Rhinol Laryngol 95:356–364

    Article  CAS  PubMed  Google Scholar 

  • Eiber A (1999) Mechanical modeling and dynamical behavior of the human middle ear. Audiol Neurootol 4:170–177

    Article  CAS  PubMed  Google Scholar 

  • Farmer-Fedor BL, Rabbitt RD (2002) Acoustic intensity, impedance and reflection coefficient in the human ear canal. J Acoust Soc Am 112:600–620

  • Funasaka S, Funai H, Kumakawa K (1984) Sweep-frequency tympanometry: its development and diagnostic value. Int J Audiol 23:366–379

    Article  CAS  Google Scholar 

  • Fung Y (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer, New York, pp 482–483

    Book  Google Scholar 

  • Funnell WRJ, Decraemer WF, Khanna SM (1987) On the damped frequency response of a finite-element model of the cat eardrum. J Acoust Soc Am 81:1851–1859

    Article  CAS  PubMed  Google Scholar 

  • Funnell WRJ, Khanna SM, Decraemer WF (1992) On the degree of rigidity of the manubrium in a finite-element model of the cat eardrum. J Acoust Soc Am 91:2082–2090

    Article  CAS  PubMed  Google Scholar 

  • Funnell WRJ, Laszlo CA (1978) Modeling of the cat eardrum as a thin shell using the finite-element method. J Acoust Soc Am 63:1461–1467

    Article  CAS  PubMed  Google Scholar 

  • Funnell WRJ, Laszlo CA (1982) A critical review of experimental observations on ear-drum structure and function. ORL J Oto-Rhino-Laryngol Its Relat Spec 44:181–205

    Article  CAS  Google Scholar 

  • Funnell WRJ, Maftoon N, Decraemer WF (2013) Modeling of middle ear mechanics. Middle Ear (Springer) pp 171–210

  • Gan RZ, Feng B, Sun Q (2004) Three-dimensional finite element modeling of human ear for sound transmission. Ann Biomed Eng 32:847–859

    Article  PubMed  Google Scholar 

  • Gan RZ, Sun Q (2002) Finite element modeling of human ear with external ear canal and middle ear cavity. Eng Med Biol 2002 24th Annu Conf Annu Fall Meet Biomed Eng Soc EMBSBMES Conf 2002 Proc Second Jt (IEEE) Vol 1 pp 264–265

  • Gan RZ, Yang F, Zhang X, Nakmali D (2011) Mechanical properties of stapedial annular ligament. Med Eng Phys 33:330–339

    Article  PubMed  Google Scholar 

  • Gariepy B (2010) Finite-element modelling of the newborn ear canal and middle ear

  • Gea SLR, Decraemer WF, Funnell RWJ, Dirckx JJJ, Maier H (2010) Tympanic membrane boundary deformations derived from static displacements observed with computerized tomography in human and gerbil. JARO-J Assoc Res Otolaryngol 11:1–17

    Article  Google Scholar 

  • Geerligs M, Van Breemen L, Peters G, Ackermans P, Baaijens F, Oomens C (2011) In vitro indentation to determine the mechanical properties of epidermis. J Biomech 44:1176–1181

    Article  PubMed  Google Scholar 

  • Gundersen T, Høgmoen K (1976) Holographic vibration analysis of the ossicular chain. Acta Otolaryngol (Stockh) 82:16–25

    Article  CAS  Google Scholar 

  • Harlor ADB Jr, Bower C (2009) Hearing assessment in infants and children: recommendations beyond neonatal screening. Pediatrics 124:1252–1263

    Article  PubMed  Google Scholar 

  • Harneja NK, Chaturvedi RP (1973) A study of the human ear ossicles. Indian J Otolaryngol Head Neck Surg 25:154–160

    Google Scholar 

  • Hato N, Stenfelt S, Goode RL (2003) Three-dimensional stapes footplate motion in human temporal bones. Audiol Neurotol 8:140–152

    Article  Google Scholar 

  • Hayes WC, Mockros LF (1971) Viscoelastic properties of human articular cartilage. J Appl Physiol 31:562–568

    CAS  PubMed  Google Scholar 

  • Holte L, Margolis RH, Cavanaugh RM Jr (1991) Developmental changes in multifrequency tympanograms. Audiol Off Organ Int Soc Audiol 30:1–24

    Article  CAS  Google Scholar 

  • Huang G, Daphalapurkar NP, Gan RZ, Lu H (2008) A method for measuring linearly viscoelastic properties of human tympanic membrane using nanoindentation. J Biomech Eng 130:14501

    Article  Google Scholar 

  • Hunter LL, Feeney MP, Lapsley Miller JA, Jeng PS, Bohning S (2010) Wideband reflectance in newborns: normative regions and relationship to hearing-screening results. Ear Hear 31:599–610

    PubMed  PubMed Central  Google Scholar 

  • Ikui A, Sudo M, Sando I, Fujita S (1997) Postnatal change in angle between the tympanic annulus and surrounding structures computer-aided three-dimensional reconstruction study. Ann Otol Rhinol Laryngol 106:33–36

    Article  CAS  PubMed  Google Scholar 

  • Joint Committee on Infant Hearing 1994 Position Statement (n.d.) Joint committee on infant hearing 1994 position statement. Otolaryngol Head Neck Surg 113:191–196

  • Keefe DH, Bulen JC, Arehart KH, Burns EM (1993) Ear-canal impedance and reflection coefficient in human infants and adults. J Acoust Soc Am 94:2617–2638

    Article  CAS  PubMed  Google Scholar 

  • Keefe DH, Levi E (1996) Maturation of the middle and external ears: acoustic power-based responses and reflectance tympanometry. Ear Hear 17:361–373

    Article  CAS  PubMed  Google Scholar 

  • Keefe DH, Simmons JL (2003) Energy transmittance predicts conductive hearing loss in older children and adults. J Acoust Soc Am 114:3217–3238

  • Kemper AR, Downs SM (2000) A cost-effectiveness analysis of newborn hearing screening strategies. Arch Pediatr Adolesc Med 154:484–488

    Article  CAS  PubMed  Google Scholar 

  • Khanna SM, Tonndorf J (1972) Tympanic membrane vibrations in cats studied by time-averaged holography. J Acoust Soc Am 51:1904–1920

    Article  CAS  PubMed  Google Scholar 

  • Kirikae I (1960) The structure and function of the middle ear. University of Tokyo Press, Tokyo

    Google Scholar 

  • Koike T, Wada H, Kobayashi T (2002) Modeling of the human middle ear using the finite-element method. J Acoust Soc Am 111:1306–1317

    Article  PubMed  Google Scholar 

  • Kroemer KH, Kroemer HJ (1997) Engineering physiology: bases of human factors/ergonomics (Wiley)

  • Kwacz M, Rymuza Z, Michałowski M, Wysocki J (2015) Elastic properties of the annular ligament of the human stapes—AFM measurement. J Assoc Res Otolaryngol 16:433–446

  • Ladak HM, Funnell WRJ (1996) Finite-element modeling of the normal and surgically repaired cat middle ear. J Acoust Soc Am 100:933–944

    Article  CAS  PubMed  Google Scholar 

  • Lauxmann M, Eiber A, Haag F, Ihrle S (2014) Nonlinear stiffness characteristics of the annular ligament. J Acoust Soc Am 136:1756–1767

    Article  CAS  PubMed  Google Scholar 

  • Lesser THJ, Williams KR (1988) The tympanic membrane in cross section: a finite element analysis. J Laryngol Otol 102:209–214

    Article  CAS  PubMed  Google Scholar 

  • Lim DJ (1970) Human tympanic membrane: an ultrastructural observation. Acta Otolaryngol (Stockh) 70:176–186

    Article  CAS  Google Scholar 

  • Luo H, Dai C, Gan RZ, Lu H (2009a) Measurement of Young’s modulus of human tympanic membrane at high strain rates. J Biomech Eng 131:64501

    Article  Google Scholar 

  • Luo H, Lu H, Dai C, Gan RZ (2009b) A comparison of Young’s modulus for normal and diseased human eardrums at high strain rates. Int J Exp Comput Biomech 1:1–22

    Article  Google Scholar 

  • Maftoon N, Funnell WRJ, Daniel SJ, Decraemer WF (2015) Finite-element modelling of the response of the gerbil middle ear to sound. J Assoc Res Otolaryngol 16:547–567

    Article  PubMed  PubMed Central  Google Scholar 

  • Marazita ML, Ploughman LM, Rawlings B, Remington E, Arnos KS, Nance WE (1993) Genetic epidemiological studies of early-onset deafness in the US school-age population. Am J Med Genet 46:486–491

    Article  CAS  PubMed  Google Scholar 

  • Margolis RH, Bass-Ringdahl S, Hanks WD, Holte L, Zapala DA (2003) Tympanometry in newborn infants--1 kHz norms. J Am Acad Audiol 14:383–392

  • McLellan MS, Webb CH (1950) Ear studies in the newborn infant. J Pediatr 51:672–677

    Article  Google Scholar 

  • Merchant GR, Horton NJ, Voss SE (2010) Normative reflectance and transmittance measurements on healthy newborn and 1-month-old infants. Ear Hear 31:746–754

    Article  PubMed  Google Scholar 

  • Merchant SN, Ravicz ME, Rosowski JJ (1996) Acoustic input impedance of the stapes and cochlea in human temporal bones. Hear Res 97:30–45

    Article  CAS  PubMed  Google Scholar 

  • Morris MD (1991) Factorial sampling plans for preliminary computational experiments. Technometrics 33:161–174

    Article  Google Scholar 

  • Motallebzadeh H, Charlebois M, Funnell WRJ (2013a) A non-linear viscoelastic model for the tympanic membrane. J Acoust Soc Am 134:4427–4434

    Article  PubMed  Google Scholar 

  • Motallebzadeh H, Gariepy B, Maftoon N, Funnell WRJ, Daniel SJ (2013b) Finite-element modelling of the newborn ear canal and middle ear. Proc Meet Acoust (Acoust Soc Am) 19:30101

    Article  Google Scholar 

  • Motallebzadeh H, Tafazzoli-Shadpour M, Khani MM (2015) Dynamic stress distribution in a model of implanted mandible: numerical analysis of viscoelastic bone. J Mech Med Biol 15:1550050

    Article  Google Scholar 

  • Nelson HDHD, Bougatsos CC, Nygren PP (2008) Universal newborn hearing screening: systematic review to update the 2001 U.S. Preventive Services Task Force recommendation U.S. Preventive Services Task Force evidence syntheses, formerly systematic evidence reviews (Agency for Healthcare Research and Quality (US), Rockville (MD))

  • Paradise JL (1982) Editorial retrospective: tympanometry. N Engl J Med 307:1074–1076

  • Pitaro J, Al Masaoudi L, Motallebzadeh H, Funnell WRJ, Daniel SJ (2016) Wideband reflectance measurements in newborns: Relationship to otoscopic findings. Int J Pediatr Otorhinolaryngol 86:156–160

  • Qi L, Funnell WRJ, Daniel SJ (2008) A nonlinear finite-element model of the newborn middle ear. J Acoust Soc Am 124:337

    Article  PubMed  Google Scholar 

  • Qi L, Liu H, Lutfy J, Funnell WRJ, Daniel SJ (2006) A nonlinear finite-element model of the newborn ear canal. J Acoust Soc Am 120:3789

    Article  PubMed  PubMed Central  Google Scholar 

  • Rabbitt RD (1988) High-frequency plane waves in the ear canal: application of a simple asymptotic theory. J Acoust Soc Am 84:2070–2080

    Article  CAS  PubMed  Google Scholar 

  • Ravicz ME, Cheng JT, Rosowski JJ (2014) Sound pressure distribution within natural and artificial human ear canals: Forward stimulation. J Acoust Soc Am 136:3132–3146

  • Rollhäuser H (1950) Die zugfestigkeit der menschlichen haut. Gegenbaurs Morph Jb 90:249–261

    Google Scholar 

  • Rosowski JJ, Cheng JT, Ravicz ME, Hulli N, Hernandez-Montes M, Harrington E, Furlong C (2009) Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 04-25 kHz. Hear Res 253:83–96

  • Ruah CB, Schachern PA, Zelterman D, Paparella MM, Yoon TH (1991) Age-related morphologic changes in the human tympanic membrane. A light and electron microscopic study. Arch Otolaryngol Head Neck Surg 117:627–634

    Article  CAS  PubMed  Google Scholar 

  • Rubinstein M, Feldman B, Fischler H, Frei EH, Spira D (1966) Measurement of stapedial-footplate displacements during transmission of sound through the middle ear. J Acoust Soc Am 40:1420–1426

    Article  CAS  PubMed  Google Scholar 

  • Sanford CA, Feeney MP (2008) Effects of maturation on tympanometric wideband acoustic transfer functions in human infants. J Acoust Soc Am 124:2106–2122

    Article  PubMed  PubMed Central  Google Scholar 

  • Saunders JC, Kaltenbach JA, Relkin EM (1983) The structural and functional development of the outer and middle ear. Dev Audit Vestib Syst. 4–10

  • Shahnaz N, Miranda T, Polka L (2008) Multifrequency tympanometry in neonatal intensive care unit and well babies. J Am Acad Audiol 19:392–418

    Article  PubMed  Google Scholar 

  • Shanks JE, Lilly DJ (1981) An evaluation of tympanometric estimates of ear canal volume. J Speech Hear Res 24:557–566

    Article  CAS  PubMed  Google Scholar 

  • Soons JA, Aernouts J, Dirckx JJ (2010) Elasticity modulus of rabbit middle ear ossicles determined by a novel micro-indentation technique. Hear Res 263:33–37

    Article  PubMed  Google Scholar 

  • Standring S (2008) Gray’s anatomy: the anatomical basis of clinical practice. Elsevier 40th ed

  • Stepp CE, Voss SE (2005) Acoustics of the human middle-ear air space. J Acoust Soc Am 118:861–871

    Article  PubMed  Google Scholar 

  • Stinson MR, Daigle GA (2005) Comparison of an analytic horn equation approach and a boundary element method for the calculation of sound fields in the human ear canal. J Acoust Soc Am 118:2405–2411

    Article  PubMed  Google Scholar 

  • Stinson MR, Lawton BW (1989) Specification of the geometry of the human ear canal for the prediction of sound-pressure level distribution. J Acoust Soc Am 85:2492–2503

    Article  CAS  PubMed  Google Scholar 

  • Stinson MR, Shaw EAG, Lawton BW (1982) Estimation of acoustical energy reflectance at the eardrum from measurements of pressure distribution in the human ear canal. J Acoust Soc Am 72:766–773

    Article  CAS  PubMed  Google Scholar 

  • Tonndorf J, Khanna SM (1972) Tympanic-membrane vibrations in human cadaver ears studied by time-averaged holography. J Acoust Soc Am 52:1221–1233

  • Volandri G, Di Puccio F, Forte P, Carmignani C (2011) Biomechanics of the tympanic membrane. J Biomech 44:1219–1236

    Article  CAS  PubMed  Google Scholar 

  • Voss SE, Allen JB (1994) Measurement of acoustic impedance and reflectance in the human ear canal. J Acoust Soc Am 95:372–384

    Article  CAS  PubMed  Google Scholar 

  • Voss SE, Horton NJ, Woodbury RR, Sheffield KN (2008) Sources of variability in reflectance measurements on normal cadaver ears. Ear Hear 29:651–665

    Article  PubMed  Google Scholar 

  • Wada H, Metoki T, Kobayashi T (1992) Analysis of dynamic behavior of human middle ear using a finite-element method. J Acoust Soc Am 92:3157–3168

    Article  CAS  PubMed  Google Scholar 

  • Waller TS, Amberg A (2002) Dynamic measurement of the circular stapes ligamentum using electrostatic forces. Ph.D. thesis, Faculty of medicine of the Bavarian Julius-Maximilian’s-University of Wurzburg, Germany pp 28–29

  • Wellman P, Howe RD, Dalton E, Kern KA (1999). Breast tissue stiffness in compression is correlated to histological diagnosis. Harv. BioRobotics Lab. Tech. Rep. Retrieved from https://biorobotics.harvard.edu/pubs/1999/mechprops.pdf

  • Wever EG, Lawrence M (1954) Physiological acoustics. Prinston University Press, Prinston

    Book  Google Scholar 

  • Willi UB, Ferrazzini MA, Huber AM (2002) The incudo-malleolar joint and sound transmission losses. Hear Res 174:32–44

    Article  PubMed  Google Scholar 

  • Williamson AK, Chen AC, Sah RL (2001) Compressive properties and function-composition relationships of developing bovine articular cartilage. J Orthop Res Off Publ Orthop Res Soc 19:1113–1121

    Article  CAS  Google Scholar 

  • Yamada H, Evans FG (1970) Strength of biological materials. Williams & Wilkins, Baltimore

    Google Scholar 

  • Zhang X, Gan RZ (2013) Dynamic properties of human tympanic membrane based on frequency-temperature superposition. Ann Biomed Eng 41:205–214

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Canadian Institutes of Health Research, the Fonds de recherche en santé du Québec, the Natural Sciences and Engineering Research Council (Canada), the Montréal Children’s Hospital Research Institute and the McGill University Health Centre Research Institute. Computations were made on the supercomputer Guillimin of McGill University, managed by Calcul Québec and Compute Canada; the operation of this supercomputer is funded by the Canada Foundation for Innovation, NanoQuébec, the Réseau de Médecine Génétique Appliquée and the Fonds de recherche du Québec—Nature et technologies. The authors thank C. Northrop (Temporal Bone Foundation, Boston) for the histological images used to supplement our CT scan. The authors would also like to thank the editors and the three anonymous reviewers who helped us to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Robert J. Funnell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motallebzadeh, H., Maftoon, N., Pitaro, J. et al. Finite-Element Modelling of the Acoustic Input Admittance of the Newborn Ear Canal and Middle Ear. JARO 18, 25–48 (2017). https://doi.org/10.1007/s10162-016-0587-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-016-0587-3

Keywords

Navigation