Skip to main content
Log in

Auditory Processing Disorders with and without Central Auditory Discrimination Deficits

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Auditory processing disorder (APD) is defined as a processing deficit in the auditory modality and spans multiple processes. To date, APD diagnosis is mostly based on the utilization of speech material. Adequate nonspeech tests that allow differentiation between an actual central hearing disorder and related disorders such as specific language impairments are still not adequately available. In the present study, 84 children between 6 and 17 years of age (clinical group), referred to three audiological centers for APD diagnosis, were evaluated with standard audiological tests and additional auditory discrimination tests. Latter tests assessed the processing of basic acoustic features at two different stages of the ascending central auditory system: (1) auditory brainstem processing was evaluated by quantifying interaural frequency, level, and signal duration discrimination (interaural tests). (2) Diencephalic/telencephalic processing was assessed by varying the same acoustic parameters (plus signals with sinusoidal amplitude modulation), but presenting the test signals in conjunction with noise pulses to the contralateral ear (dichoticsignal/noise tests). Data of children in the clinical group were referenced to normative data obtained from more than 300 normally developing healthy school children. The results in the audiological and the discrimination tests diverged widely. Of the 39 children that were diagnosed with APD in the audiological clinic, 30 had deficits in auditory performance. Even more alarming was the fact that of the 45 children with a negative APD diagnosis, 32 showed clear signs of a central hearing deficit. Based on these results, we suggest revising current diagnostic procedure to evaluate APD in order to more clearly differentiate between central auditory processing deficits and higher-order (cognitive and/or language) processing deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  • Addis L, Friederici AD, Kotz SA, Sabisch B, Barry J, Richter N, Ludwig AA, Rübsamen R, Albert FW, Pääbo S, Newbury DF, Monaco AP (2010) A locus for an auditory processing deficit and language impairment in an extended pedigree maps to 12p13.31-q14.3. Genes Brain Behav 9:545–561

    CAS  PubMed Central  PubMed  Google Scholar 

  • American Speech-Language-Hearing-Association (ASHA) (2005) (Central) Auditory processing disorders. http://www.asha.org/members/deskref-journals/deskref/default

  • Angenstein N, Brechmann A (2013) Division of labor between left and right human auditory cortices during the processing of intensity and duration. Neuroimage 83:1–11

    PubMed  Google Scholar 

  • ANSI (1996) Specifications for audiometers. [ANSI S3.6-1996]. American National Standards Institute, New York

    Google Scholar 

  • ASHA, American Speech-Language-Hearing-Association (1996) Central auditory processing: current status of research and implications for clinical practice. Am J Audiol 5(2):41–54

    Google Scholar 

  • Banai K, Sabin AT, Wright BA (2011) Separable developmental trajectories for the abilities to detect auditory amplitude and frequency modulation. Hear Res 280(1–2):219–227

    PubMed Central  PubMed  Google Scholar 

  • Banai K, Hornickel J, Skoe E, Nicol T, Zecker S, Kraus N (2009) Reading and subcortical auditory function. Cereb Cortex 19(11):2699–2707

    PubMed Central  PubMed  Google Scholar 

  • Batra R, Kuwada S, Fitzpatrick DC (1997) Sensitivity to interaural temporal disparities of low- and high-frequency neurons in the superior olivary complex. I. Heterogeneity of responses. J Neurophysiol 78(3):1222–1236

    CAS  PubMed  Google Scholar 

  • Bazwinsky I, Hilbig H, Bidmon HJ, Rübsamen R (2003) Characterization of the human superior olivary complex by calcium binding proteins and neurofilament H (SMI-32). J Comp Neurol 456:292–303

    CAS  PubMed  Google Scholar 

  • Behne N, Scheich H, Brechmann A (2005) Contralateral white noise selectively changes right human auditory cortex activity caused by a FM-direction task. J Neurophysiol 93:414–423

    PubMed  Google Scholar 

  • Behne N, Wendt B, Scheich H, Brechmann A (2006) Contralateral white noise selectively changes left human auditory cortex activity in a lexical decision task. J Neurophysiol 95:2630–2637

    PubMed  Google Scholar 

  • Belin P, McAdams S, Smith B, Savel S, Thivard L, Samson S, Samson Y (1998) The functional anatomy of sound intensity discrimination. J Neurosci 18:6388–6394

    CAS  PubMed  Google Scholar 

  • Berlin CI, Hood LJ, Cecola RP, Jackson DF, Szabo P (1993a) Does type I afferent neuron dysfunction reveal itself through lack of efferent suppression? Hear Res 65(1–2):40–50

    CAS  PubMed  Google Scholar 

  • Berlin CI, Hood LJ, Wen H, Szabo P, Cecola RP, Rigby P, Jackson DF (1993b) Contralateral suppression of non-linear click-evoked otoacoustic emissions. Hear Res 71(1–2):1–11

    CAS  PubMed  Google Scholar 

  • Biedermann F, Bungert P, Dörrscheidt GJ, von Cramon DY, Rübsamen R (2008) Central auditory impairment in unilateral diencephalic and telencephalic lesions. Audiol Neurootol 13(2):123–144

    PubMed  Google Scholar 

  • Biesalski P, Leitner H, Leitner E, Gangel D (1974) Der Mainzer Kindersprachtest, Sprachaudiometrie im Vorschulalter. HNO 22:160–161

    CAS  PubMed  Google Scholar 

  • Blaettner U, Scherg M, von Cramon D (1989) Diagnosis of unilateral telencephalic hearing disorders—evaluation of a simple psychoacoustic pattern discrimination test. Brain 112:177–195

    PubMed  Google Scholar 

  • Boscariol M, Guimaraes CA, Hage SR, Garcia VL, Schmutzler KM, Cendes F, Guerreiro MM (2011) Auditory processing disorder in patients with language-learning impairment and correlation with malformation of cortical development. Brain Dev 33(10):824–831

    PubMed  Google Scholar 

  • Brancucci A, Babiloni C, Rossini PM, Romani GL (2005) Right hemisphere specialization for intensity discrimination of musical and speech sounds. Neuropsychologia 632(43):1916–1923

    Google Scholar 

  • Brechmann A, Scheich H (2005) Hemispheric shifts of sound representation in auditory cortex with conceptual listening. Cereb Cortex 15:578–587

    PubMed  Google Scholar 

  • British Society of Audiology (BSA,) APD Special Interest Group (2011) Position Statement Auditory Processing Disorder (APD) http://www.thebsa.org.uk/index.php?option=com_content&view=category&layout=blog&id=21&Itemid=29

  • Brunner M, Seibert A, Dierks A, Körkel B (1998) Heidelberger Lautdifferenzierungstest (H-LAD). Westra Elektroakustik, Wertingen

    Google Scholar 

  • Bungert-Kahl P, Biedermann F, Dörrscheidt GJ, von Cramon DY, Rübsamen R (2004) Psychoacoustic test tools for the detection of deficits in central auditory processing: normative data. Z Audiol 43(2):48–71

    Google Scholar 

  • Cacace AT, McFarland DJ (1998) Central auditory processing disorder in school-aged children: a critical review. J Speech Lang Hear Res 41(2):355–373

    CAS  PubMed  Google Scholar 

  • Cameron S, Dillon H, Newall P (2006a) The listening in spatialized noise test: an auditory processing disorder study. J Am Acad Audiol 17(5):306–320

    PubMed  Google Scholar 

  • Cameron S, Dillon H, Newall P (2006b) The listening in spatialized noise test: normative data for children. Int J Audiol 45(2):99–108

    PubMed  Google Scholar 

  • Cameron S, Dillon H (2008) The Listening in Spatialized Noise–Sentences Test (LISN-S): comparison to the prototype LISN and results from children with either a suspected (central) auditory processing disorder or a confirmed language disorder. J Am Acad Audiol 19:377–391

    PubMed  Google Scholar 

  • Celesia GG (1976) Organization of auditory cortical areas in man. Brain 99(3):403–414

    CAS  PubMed  Google Scholar 

  • Chermak GD (2002) Deciphering auditory processing disorders in children. Otolaryngol Clin N Am 35(4):733–749

    Google Scholar 

  • Collet L, Kemp DT, Veuillet E, Duclaux R, Moulin A, Morgon A (1990) Effect of contralateral auditory stimuli on active cochlear micro-mechanical properties in human subjects. Hear Res 43(2–3):251–261

    CAS  PubMed  Google Scholar 

  • Dawes P, Bishop DV (2008) Maturation of visual and auditory temporal processing in school-aged children. J Speech Lang Hear Res 51(4):1002–1015

    PubMed  Google Scholar 

  • Dawes P, Bishop D (2009) Auditory processing disorder in relation to developmental disorders of language, communication and attention: a review and critique. Int J Lang Commun Disord 44(4):440–465

    PubMed  Google Scholar 

  • Dawes P, Bishop DV, Sirimanna T, Bamiou DE (2008) Profile and aetiology of children diagnosed with auditory processing disorder (APD). Int J Pediatr Otorhinolaryngol 72(4):483–489

    PubMed  Google Scholar 

  • Dawes P, Sirimanna T, Burton M, Vanniasegaram I, Tweedy F, Bishop DV (2009) Temporal auditory and visual motion processing of children diagnosed with auditory processing disorder and dyslexia. Ear Hear 30(6):675–686

    PubMed  Google Scholar 

  • de Maddalena H, Watzlawick-Schumacher M, Schmitz-Salue C, Arold R (2001) Die dichotischen Diskriminationstests von Feldmann und Uttenweiler: Welcher Test sollte bei 8- bis 10-jährigen Kindern verwendet werden? Oto-Rhino-Laryngologia Nova 11(6):271–276

    Google Scholar 

  • Dehmel S, Kopp-Scheinpflug C, Weick M, Dorrscheidt GJ, Rübsamen R (2010) Transmission of phase-coupling accuracy from the auditory nerve to spherical bushy cells in the Mongolian gerbil. Hear Res 268(1–2):234–249

    PubMed  Google Scholar 

  • Delb W, Strauss DJ, Hohenberg G, Plinkert PK (2003) The binaural interaction component (BIC) in children with central auditory processing disorders (CAPD). Int J Audiol 42(7):401–412

    PubMed  Google Scholar 

  • Dias KZ, Jutras B, Acrani IO, Pereira LD (2012) Random Gap Detection Test (RGDT) performance of individuals with central auditory processing disorders from 5 to 25 years of age. Int J Pediatr Otorhinolaryngol 76(2):174–178

    PubMed  Google Scholar 

  • Dierks A, Seibert A, Brunner M, Körkel B, Haffner J, Strehlow U, Parzer P, Resch F (1999) Test construction, analysis and trial of the Heidelberger Sound Discrimination Test for measuring auditory-kinesthetic perceptual discrimination acuity. Zeitschrift für Kinder- und Jugendpsychiatrie und Psychotherapie 27(1):29–36

    CAS  PubMed  Google Scholar 

  • Epp B, Hots J, Verhey JL, Schaette R (2012) Increased intensity discrimination thresholds in tinnitus subjects with a normal audiogram. J Acoust Soc Am 132(3):EL196–EL201

    CAS  PubMed  Google Scholar 

  • Feldmann H (1965) Dichotischer Diskriminationstest, eine neue Methode zur Diagnostik zentraler Hörstörungen. Arch Ohr Nas u Kehlk Heilk 184:294–329

    CAS  Google Scholar 

  • Ferguson MA, Hall RL, Riley A, Moore DR (2011) Communication, listening, cognitive and speech perception skills in children with auditory processing disorder (APD) or specific language impairment (SLI). J Speech Lang Hear Res 54(1):211–227

    PubMed  Google Scholar 

  • Finlayson PG, Caspary DM (1991) Low-frequency neurons in the lateral superior olive exhibit phase-sensitive binaural inhibition. J Neurophysiol 65(3):598–605

    CAS  PubMed  Google Scholar 

  • Fitzgibbons PJ, Gordon-Salant S (1996) Auditory temporal processing in elderly listeners. J Am Acad Audiol 7(3):183–189

    CAS  PubMed  Google Scholar 

  • Freigang C, Schmidt L, Wagner J, Eckardt R, Steinhagen-Thiessen E, Ernst A, Rübsamen R (2011) Evaluation of central auditory discrimination abilities in older adults. Front Aging Neurosci 3:6

    PubMed Central  PubMed  Google Scholar 

  • Gelfand SA (1996) Essentials of audiology. Thieme New York, Stuttgart

    Google Scholar 

  • Gopal KV, Pierel K (1999) Binaural interaction component in children at risk for central auditory processing disorders. Scand Audiol 28(2):77–84

    CAS  PubMed  Google Scholar 

  • Guinan JJ Jr (2006) Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans. Ear Hear 27(6):589–607

    PubMed  Google Scholar 

  • Hall JL 2nd, Goldstein MH Jr (1968) Representation of binaural stimuli by single units in primary auditory cortex of unanesthetized cats. J Acoust Soc Am 43(3):456–461

    PubMed  Google Scholar 

  • Hartley DE, Wright BA, Hogan SC, Moore DR (2000) Age-related improvements in auditory backward and simultaneous masking in 6- to 10-year-old children. J Speech Lang Hear Res 43(6):1402–1415

    CAS  PubMed  Google Scholar 

  • Hartley DEH, Hogan SC, Hardiman MJ, Wright BA, Moore DR (1999) Auditory temporal and spectral processing in school-age children with otitis media with effusion (OME). Br J Audiol 33:126

    Google Scholar 

  • Häusler R, Levine RA (1980) Brain stem auditory evoked potentials are related to interaural time discrimination in patients with multiple sclerosis. Brain Res 191(2):589–594

    PubMed  Google Scholar 

  • Häusler R, Colburn S, Marr E (1983) Sound localization in subjects with impaired hearing. Spatial-discrimination and interaural-discrimination tests. Acta Otolaryngol Suppl 400:1–62

    PubMed  Google Scholar 

  • Heffner HE, Heffner RS (1989) Unilateral auditory cortex ablation in macaques results in a contralateral hearing loss. J Neurophysiol 62(3):789–801

    CAS  PubMed  Google Scholar 

  • Hind S (2006) Survey of care pathway for auditory processing disorder. Audiological Med 4:12–24

    Google Scholar 

  • Jäncke L, Wüstenberg T, Schulze K, Heinze HJ (2002) Asymmetric hemodynamic responses of the human auditory cortex to monaural and binaural stimulation. Hear Res 170(1–2):166–178

    PubMed  Google Scholar 

  • Jerger J, Musiek F (2000) Report of the consensus conference on the diagnosis of auditory processing disorders in school-aged children. J Am Acad Audiol 11(9):467–474

    CAS  PubMed  Google Scholar 

  • Jerger J, Oliver T, Chmiel R (1988) The auditory middle latency response. Semin Hear 9:75–85

    Google Scholar 

  • Jirsa RE (1992) The clinical utility of the P3 AERP in children with auditory processing disorders. J Speech Hear Res 35(4):903–912

    CAS  PubMed  Google Scholar 

  • Jirsa RE, Clontz KB (1990) Long latency auditory event-related potentials from children with auditory processing disorders. Ear Hear 11(3):222–232

    CAS  PubMed  Google Scholar 

  • Johnson KL, Nicol TG, Kraus N (2005) Brain stem response to speech: a biological marker of auditory processing. Ear Hear 26(5):424–434

    PubMed  Google Scholar 

  • Katz J, Tillery KL (2005) Can central auditory processing tests resist supramodal influences? Am J Audiol 14(2):124–127, discussion 143–50

    PubMed  Google Scholar 

  • Keller F (1977) Verschiedene Aufsprachen des Sprachverstehenstests nach DIN 45621 (Freiburger Test). Biomed Technol 22:292–298

    CAS  Google Scholar 

  • Kidd GR, Watson CS, Gygi B (2007) Individual differences in auditory abilities. J Acoust Soc Am 122(1):418–435

    PubMed  Google Scholar 

  • King C, Warrier CM, Hayes E, Kraus N (2002) Deficits in auditory brainstem pathway encoding of speech sounds in children with learning problems. Neurosci Lett 319(2):111–115

    CAS  PubMed  Google Scholar 

  • King WM, Lombardino LJ, Crandell CC, Leonard CM (2003) Comorbid auditory processing disorder in developmental dyslexia. Ear Hear 24(5):448–456

    PubMed  Google Scholar 

  • Kraus N, Nicol T (2005) Brainstem origins for cortical ‘what’ and ‘where’ pathways in the auditory system. Trends Neurosci 28(4):176–181

    CAS  PubMed  Google Scholar 

  • Kraus N, McGee TJ, Carrell TD, Zecker SG, Nicol TG, Koch DB (1996) Auditory neurophysiologic responses and discrimination deficits in children with learning problems. Science 273(5277):971–973

    CAS  PubMed  Google Scholar 

  • Kühnle S, Ludwig AA, Meuret S, Küttner C, Witte C, Scholbach J, Fuchs M, Rübsamen R (2013) Development of auditory localization accuracy and auditory spatial discrimination in children and adolescents. Audiol Neurootol 18(1):48–62

    PubMed  Google Scholar 

  • Kumar UA, Vanaja CS (2004) Functioning of olivocochlear bundle and speech perception in noise. Ear Hear 25(2):142–146

    PubMed  Google Scholar 

  • Kumar UA, Ameenudin S, Sangamanatha AV (2012) Temporal and speech processing skills in normal hearing individuals exposed to occupational noise. Noise Health 14(58):100–105

    PubMed  Google Scholar 

  • Levitt H (1971) Transformed up-down methods in psychoacoustics. J Acoust Soc Am 49(2), Suppl 2:467+

  • Ludwig AA, Rübsamen R, Dörrscheidt GJ, Kotz SA (2012) Age-related dissociation of sensory and decision-based auditory motion processing. Front Hum Neurosci 6:1–12

    Google Scholar 

  • Majkowski J, Bochenek Z, Bochenek W, Knapik-Fijalkowska D, Kopec J (1971) Latency of averaged evoked potentials to contralateral and ipsilateral auditory stimulation in normal subjects. Brain Res 25(2):416–419

    CAS  PubMed  Google Scholar 

  • Meister H, Klüser H, von Wedel H, Walger M (2005) A measurement system for assessing binaural masking level difference (BMLD) in children. HNO 53(8):695–700

    CAS  PubMed  Google Scholar 

  • Miller CA (2011) Auditory processing theories of language disorders: past, present, and future. Lang Speech Hear Serv Sch 42(3):309–319

    PubMed  Google Scholar 

  • Moore DR (2006) Auditory processing disorder (APD): definition, diagnosis, neural basis, and intervention. Audiological Me 4:4–11

    Google Scholar 

  • Moore DR (2012) Listening difficulties in children: bottom-up and top-down contributions. J Commun Disord 45(6):411–418

    PubMed  Google Scholar 

  • Moore DR, Ferguson MA, Edmondson-Jones AM, Ratib S, Riley A (2010) Nature of auditory processing disorder in children. Pediatrics 126(2):e382–e390

    PubMed  Google Scholar 

  • Moore DR, Cowan JA, Riley A, Edmondson-Jones AM, Ferguson MA (2011) Development of auditory processing in 6- to 11-yr-old children. Ear Hear 32(3):269–285

    PubMed  Google Scholar 

  • Moore JK (1987) The human auditory brain stem: a comparative view. Hear Res 29:1–32

    CAS  PubMed  Google Scholar 

  • Moore JK, Osen KK (1979) The cochlear nuclei in man. Am J Anat 154:393–418

    CAS  PubMed  Google Scholar 

  • Morel A, Imig TJ (1987) Thalamic projections to fields A, AI, P, and VP in the cat auditory cortex. J Comp Neurol 265(1):119–144

    CAS  PubMed  Google Scholar 

  • Mottier G (1951) Mottier-Test. Über Untersuchungen zur Sprache lesegestörter Kinder. Folia Phoniatr 3:170–177

    CAS  Google Scholar 

  • Muchnik C, Ari-Even Roth D, Othman-Jebara R, Putter-Katz H, Shabtai EL, Hildesheimer M (2004) Reduced medial olivocochlear bundle system function in children with auditory processing disorders. Audiol Neurootol 9(2):107–114

    PubMed  Google Scholar 

  • Musiek FE, Gollegly K, Ross M (1985) Profile of types of central auditory processing disorder in children with learning disabilities. J Child Commun Disord 9:43–63

    Google Scholar 

  • Musiek FE, Verkest SB, Gollegly MA (1988) Effects of neuromaturation on auditory-evoked potentials. Semin Hear 9:1–15

    Google Scholar 

  • Nieuwenhuys R (1984) Anatomy of the auditory pathways, with emphasis on the brain stem. Adv Otorhinolaryngol 34:25–38

    CAS  PubMed  Google Scholar 

  • Pentland A (1980) Maximum likelihood estimation: the best PEST. Percept Psychophys 28(4):377–379

    CAS  PubMed  Google Scholar 

  • Popelar J, Erre JP, Aran JM, Cazals Y (1994) Plastic changes in ipsi-contralateral differences of auditory cortex and inferior colliculus evoked potentials after injury to one ear in the adult guinea pig. Hear Res 72(1–2):125–134

    CAS  PubMed  Google Scholar 

  • Puschmann S, Brechmann A, Thiel CM (2012) Learning-dependent plasticity in human auditory cortex during appetitive operant conditioning. Hum Brain Mapp 12

  • Rance G, McKay C, Grayden D (2004) Perceptual characterization of children with auditory neuropathy. Ear Hear 25(1):34–46

    PubMed  Google Scholar 

  • Rance G, Beer DE, Cone-Wesson B, Shepherd RK, Dowell RC, King AM, Rickards FW, Clark GM (1999) Clinical findings for a group of infants and young children with auditory neuropathy. Ear Hear 20(3):238–252

    CAS  PubMed  Google Scholar 

  • Reale RA, Brugge JF (1990) Auditory cortical neurons are sensitive to static and continuously changing interaural phase cues. J Neurophysiol 64(4):1247–1260

    CAS  PubMed  Google Scholar 

  • Reiterer SM, Erb M, Droll CD, Anders S, Ethofer T, Grodd W, Wildgruber D (2005) Impact of task difficulty on lateralization of pitch and duration discrimination. Neuroreport 16:239–242

    PubMed  Google Scholar 

  • Reser DH, Fishman YI, Arezzo JC, Steinschneider M (2000) Binaural interactions in primary auditory cortex of the awake macaque. Cereb Cortex 10(6):574–584

    CAS  PubMed  Google Scholar 

  • Rosen S (2005) “A riddle wrapped in a mystery inside an enigma”: defining central auditory processing disorder. Am J Audiol 14(2):139–142, discussion 143–50

    PubMed  Google Scholar 

  • Rosen S, Cohen M, Vanniasegaram I (2010) Auditory and cognitive abilities of children suspected of auditory processing disorder (APD). Int J Pediatr Otorhinolaryngol 74(6):594–600

    PubMed  Google Scholar 

  • Rosenzweig MR (1951) Representation of the two ears at the auditory cortex. Am J Physiol 167(1):147–158

    CAS  PubMed  Google Scholar 

  • Rutkowski RG, Wallace MN, Shackleton TM, Palmer AR (2000) Organisation of binaural interactions in the primary and dorsocaudal fields of the guinea pig auditory cortex. Hear Res 145(1–2):177–189

    CAS  PubMed  Google Scholar 

  • Ryan S, Kemp DT, Hinchcliffe R (1991) The influence of contralateral acoustic stimulation on click-evoked otoacoustic emissions in humans. Br J Audiol 25(6):391–397

    CAS  PubMed  Google Scholar 

  • Schönwiesner M, Rübsamen R, von Cramon DY (2005) Spectral and temporal processing in the human auditory cortex-revisited. Ann N Y Acad Sci 1060:89–92

    PubMed  Google Scholar 

  • Schönwiesner M, Krumbholz K, Rübsamen R, Fink GR, von Cramon DY (2007) Hemispheric asymmetry for auditory processing in the human auditory brain stem, thalamus, and cortex. Cereb Cortex 17(2):492–499

    PubMed  Google Scholar 

  • Shannon RV, Zeng F-G, Kamath V, Wygonski J, Ekelid M (1995) Speech recognition with primarily temporal cues. Science 270:303–304

    CAS  PubMed  Google Scholar 

  • Sharma M, Purdy SC, Kelly AS (2009) Comorbidity of auditory processing, language, and reading disorders. J Speech Lang Hear Res 52(3):706–722

    PubMed  Google Scholar 

  • Sharma M, Purdy SC, Newall P, Wheldall K, Beaman R, Dillon H (2006) Electrophysiological and behavioral evidence of auditory processing deficits in children with reading disorder. Clin Neurophysiol 117(5):1130–1144

    CAS  PubMed  Google Scholar 

  • Siegel S, Castellan NJ (1988) Nonparametric statistics for the behavioral sciences, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Starr A, Picton TW, Sininger Y, Hood LJ, Berlin CI (1996) Auditory neuropathy. Brain 119(Pt 3):741–753

    PubMed  Google Scholar 

  • Stone MA, Moore BC, Greenish H (2008) Discrimination of envelope statistics reveals evidence of sub-clinical hearing damage in a noise-exposed population with ‘normal’ hearing thresholds. Int J Audiol 47(12):737–750

    PubMed  Google Scholar 

  • Talcott JB, Witton C, McLean MF, Hansen PC, Rees A, Green GG, Stein JF (2000) Dynamic sensory sensitivity and children’s word decoding skills. Proc Natl Acad Sci U S A 97(6):2952–2957

    CAS  PubMed Central  PubMed  Google Scholar 

  • Talcott JB, Witton C, Hebb GS, Stoodley CJ, Westwood EA, France SJ, Hansen PC, Stein JF (2002) On the relationship between dynamic visual and auditory processing and literacy skills; results from a large primary-school study. Dyslexia 8(4):204–225

    PubMed  Google Scholar 

  • Tollin DJ (2003) The lateral superior olive: a functional role in sound source localization. Neuroscientist 9(2):127–143

    PubMed  Google Scholar 

  • Tollin DJ, Yin TC (2005) Interaural phase and level difference sensitivity in low-frequency neurons in the lateral superior olive. J Neurosci 25(46):10648–10657

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uttenweiler V (1980) Dichotischer Diskriminationstest für Kinder. Sprache Stimme Gehör 4:107–111

    Google Scholar 

  • Vanniasegaram I, Cohen M, Rosen S (2004) Evaluation of selected auditory tests in school-age children suspected of auditory processing disorders. Ear Hear 25(6):586–597

    PubMed  Google Scholar 

  • Warren EH 3rd, Liberman MC (1989) Effects of contralateral sound on auditory-nerve responses. II. Dependence on stimulus variables. Hear Res 37(2):105–121

    PubMed  Google Scholar 

  • Watson CS, Kidd GR (2002) On the lack of association between basic auditory abilities, speech processing, and other cognitive skills. Semin Hear 23(1):83–94

    Google Scholar 

  • Watson CS, Kidd GR, Homer DG, Connell PJ, Lowther A, Eddins DA, Krueger G, Goss DA, Rainey BB, Gospel MD, Watson BU (2003) Sensory, cognitive, and linguistic factors in the early academic performance of elementary school children: the Benton-IU project. J Learn Disabil 36(2):165–197

    PubMed  Google Scholar 

  • Weisz N, Hartmann T, Dohrmann K, Schlee W, Norena A (2006) High-frequency tinnitus without hearing loss does not mean absence of deafferentation. Hear Res 222(1–2):108–114

    PubMed  Google Scholar 

  • Wilson WJ, Arnott W (2013) Using different criteria to diagnose (central) auditory processing disorder: how big a difference does it make? J Speech Lang Hear Res 56(1):63–70

    PubMed  Google Scholar 

  • Willeford JA (1985) Sentence tests of central auditory dysfunction. In: Katz J (ed) Handbook of clinical audiology, 3rd edn. Williams & Wilkins, Baltimore, pp 404–420

    Google Scholar 

  • Witton C, Talcott JB, Hansen PC, Richardson AJ, Griffiths TD, Rees A, Stein JF, Green GG (1998) Sensitivity to dynamic auditory and visual stimuli predicts nonword reading ability in both dyslexic and normal readers. Curr Biol 8(14):791–797

    CAS  PubMed  Google Scholar 

  • Woldorff MG, Tempelmann C, Fell J, Tegeler C, Gaschler-Markefski B, Hinrichs H, Heinz HJ, Scheich H (1999) Lateralized auditory spatial perception and the contralaterality of cortical processing as studied with functional magnetic resonance imaging and magnetoencephalography. Hum Brain Mapp 7(1):49–66

    CAS  PubMed  Google Scholar 

  • Zatorre RJ, Belin P (2011) Spectral and temporal processing in human auditory cortex. Cereb Cortex 11:946–953

    Google Scholar 

  • Zeng FG, Kong YY, Michalewski HJ, Starr A (2005) Perceptual consequences of disrupted auditory nerve activity. J Neurophysiol 93(6):3050–3063

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors want to thank Jürgen Baldauf who pioneered this investigation, but sadly and unexpectedly passed away during this study. Furthermore, we want to thank Karin Wenke and Katrin Dransfeld for supporting audiological data collection and allocation of diagnoses, and Ulrike Barth and Beate Günther for helping with the recruitment of control participants. Special thanks go to Gerd Joachim Dörrscheidt who implemented the threshold estimation algorithm and helped with the statistical analysis. We also thank Elizabeth Kelly for the proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Annemarie Ludwig.

Additional information

The study was carried out in all institutions.

APPENDIX

APPENDIX

TABLE 7 Audiological data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ludwig, A.A., Fuchs, M., Kruse, E. et al. Auditory Processing Disorders with and without Central Auditory Discrimination Deficits. JARO 15, 441–464 (2014). https://doi.org/10.1007/s10162-014-0450-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-014-0450-3

Keywords

Navigation