Skip to main content

Advertisement

Log in

Clinical features of CKD-MBD in Japan: cohort studies and registry

  • Review article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Randomized controlled trials (RCTs) are essential for evidence-based medicine; however, cohort studies and registries provide an important information about risk factors and, hence, shed light on the target of laboratory parameters. The uniqueness of the current Japanese CKD-MBD guidelines lies in the lower target range of intact parathyroid hormone levels than those used in other countries, which is based on analyses of the nationwide Japan Renal Data Registry. Cohort studies were also useful in exploring risk factors of renal outcome in predialysis patients. It was revealed that low vitamin D status (very prevalent in Japan) and high fibroblast growth factor 23 (FGF23) levels predict poor renal outcome. The reported association of FGF23 levels with left ventricular hypertrophy (LVH) and heart failure observed in cohort studies may support the idea of adding the 4th component of CKD-MBD, namely, “LVH” to the three original components. When it is not feasible to conduct RCTs regarding intervention, we have no choice but to rely on observational studies with sophisticated analysis methods, such as facility-level analysis and marginal structural model minimizing indication bias. Observational studies conducted in Japan revealed that the side effects of medications for CKD-MBD, resultant compliance, and effective doses in terms of hard outcome in Japanese patients were found to be different from those in other countries. For example, the MBD-5D study confirmed the benefit of cinacalcet in terms of mortality despite its median dose of only 25 mg/day. These data are very helpful for future guidelines specific to Japanese patients with CKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Goodkin DA, Bragg-Gresham JL, Koenig KG, Wolfe RA, Akiba T, Andreucci VE, Saito A, Rayner HC, Kurokawa K, Port FK, Held PJ, Young EW. Association of comorbid conditions and mortality in hemodialysis patients in Europe, Japan, and the United States: the Dialysis Outcomes and Practice Patterns Study (DOPPS). J Am Soc Nephrol. 2003;14(12):3270–7.

    Article  PubMed  Google Scholar 

  2. Tentori F, McCullough K, Kilpatrick RD, Bradbury BD, Robinson BM, Kerr PG, Pisoni RL. High rates of death and hospitalization follow bone fracture among hemodialysis patients. Kidney Int. 2014;85(1):166–73.

    Article  PubMed  Google Scholar 

  3. Fukagawa M, Komaba H, Onishi Y, Fukuhara S, Akizawa T. Kurokawa K; MBD-5D Study Group. Mineral metabolism management in hemodialysis patients with secondary hyperparathyroidism in Japan: baseline data from the MBD-5D. Am J Nephrol. 2011;33(5):427–37.

    Article  CAS  PubMed  Google Scholar 

  4. Fukagawa M, Yokoyama K, Koiwa F, Taniguchi M, Shoji T, Kazama JJ, Komaba H, Ando R, Kakuta T, Fujii H, Nakayama M, Shibagaki Y, Fukumoto S, Fujii N, Hattori M, Ashida A, Iseki K, Shigematsu T, Tsukamoto Y, Tsubakihara Y, Tomo T, Hirakata H, Akizawa T. CKD-MBD Guideline Working Group.; Japanese Society for Dialysis Therapy. Clinical practice guideline for the management of chronic kidney disease-mineral and bone disorder. Ther Apher Dial. 2013;17(3):247–88.

    Article  PubMed  Google Scholar 

  5. Nakano C, Hamano T, Fujii N, Matsui I, Tomida K, Mikami S, Inoue K, Obi Y, Okada N, Tsubakihara Y, Isaka Y, Rakugi H. Combined use of vitamin D status and FGF23 for risk stratification of renal outcome. Clin J Am Soc Nephrol. 2012;7(5):810–9.

    Article  CAS  PubMed  Google Scholar 

  6. Weber TJ, Liu S, Indridason OS, Quarles LD. Serum FGF23 levels in normal and disordered phosphorus homeostasis. J Bone Miner Res. 2003;18:1227–34.

    Article  CAS  PubMed  Google Scholar 

  7. Isakova T, Wahl P, Vargas GS, Gutierrez OM, Scialla J, Xie H, Appleby D, Nessel L, Bellovich K, Chen J, Hamm L, Gadegbeku C, Horwitz E, Townsend RR, Anderson CA, Lash JP, Hsu CY, Leonard MB, Wolf M. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 2011;79:1370–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chonchol M, Greene T, Zhang Y, Hoofnagle AN, Cheung AK. Low Vitamin D and High Fibroblast Growth Factor 23 Serum Levels Associate with Infectious and Cardiac Deaths in the HEMO Study. J Am Soc Nephrol. 2016;27(1):227–37.

    Article  PubMed  Google Scholar 

  9. Rossaint J, Oehmichen J, Van Aken H, Reuter S, Pavenstädt HJ, Meersch M, Unruh M, Zarbock A. FGF23 signaling impairs neutrophil recruitment and host defense during CKD. J Clin Invest. 2016;126(3):962–74.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kendrick J, Cheung AK, Kaufman JS, Greene T, Roberts WL, Smits G, Chonchol M. HOST Investigators. FGF-23 associates with death, cardiovascular events, and initiation of chronic dialysis. J Am Soc Nephrol. 2011;22(10):1913–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Scialla JJ, Xie H, Rahman M, Anderson AH, Isakova T, Ojo A, Zhang X, Nessel L, Hamano T, Grunwald JE, Raj DS, Yang W, He J, Lash JP, Go AS, Kusek JW, Feldman H, Wolf M. Chronic enal Insufficiency Cohort (CRIC) Study Investigators. Fibroblast growth factor-23 and cardiovascular events in CKD. J Am Soc Nephrol. 2014;25(2):349–60.

    Article  CAS  PubMed  Google Scholar 

  12. Wolf M, White KE. Coupling fibroblast growth factor 23 production and cleavage: iron deficiency, rickets, and kidney disease. Curr Opin Nephrol Hypertens. 2014;23(4):411–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nakano C, Hamano T, Fujii N, Obi Y, Matsui I, Tomida K, Mikami S, Inoue K, Shimomura A, Nagasawa Y, Okada N, Tsubakihara Y, Rakugi H, Isaka Y. Intact fibroblast growth factor 23 levels predict incident cardiovascular event before but not after the start of dialysis. Bone. 2012;50(6):1266–74.

    Article  CAS  PubMed  Google Scholar 

  14. Scialla JJ, Lau WL, Reilly MP, Isakova T, Yang HY, Crouthamel MH, Chavkin NW, Rahman M, Wahl P, Amaral AP, Hamano T, Master SR, Nessel L, Chai B, Xie D, Kallem RR, Chen J, Lash JP, Kusek JW, Budoff MJ, Giachelli CM, Wolf M. Chronic renal insufficiency cohort study investigators. Fibroblast growth factor 23 is not associated with and does not induce arterial calcification. Kidney Int. 2013;83(6):1159–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tagawa M, Hamano T, Nishi H, Tsuchida K, Hanafusa N, Fukatsu A, Iseki K, Tsubakihara Y. Mineral Metabolism markers are associated with myocardial infarction and hemorrhagic stroke but Not Ischemic Stroke in Hemodialysis Patients: A Longitudinal Study. PLoS ONE. 2014;9(12):e114678.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tonelli M, Sacks F, Pfeffer M, Gao Z, Curhan G. Cholesterol and recurrent events trial investigators. Circulation. 2005;112(17):2627–33.

    Article  CAS  PubMed  Google Scholar 

  17. Parker BD, Schurgers LJ, Brandenburg VM, Christenson RH, Vermeer C, Ketteler M, Shlipak MG, Whooley MA, Ix JH. The associations of fibroblast growth factor 23 and uncarboxylated matrix Gla protein with mortality in coronary artery disease: the Heart and Soul Study. Ann Intern Med. 2010;152(10):640–8.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T, Gutiérrez OM, Aguillon-Prada R, Lincoln J, Hare JM, Mundel P, Morales A, Scialla J, Fischer M, Soliman EZ, Chen J, Go AS, Rosas SE, Nessel L, Townsend RR, Feldman HI, St John Sutton M, Ojo A, Gadegbeku C, Di Marco GS, Reuter S, Di Marco GS, Kentrup D, Tiemann K, Brand M, Hill JA, Moe OW, Kuro OM, Kusek JW, Keane MG, Wolf M. FGF23 induces left ventricular hypertrophy. J Clin Invest. 2011;121(11):4393–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gutiérrez OM, Januzzi JL, Isakova T, Laliberte K, Smith K, Collerone G, Sarwar A, Hoffmann U, Coglianese E, Christenson R, Wang TJ, deFilippi C, Wolf M. Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation. 2009;119(19):2545–52.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shoji T, Shinohara K, Kimoto E, Emoto M, Tahara H, Koyama H, Inaba M, Fukumoto S, Ishimura E, Miki T, Tabata T, Nishizawa Y. Lower risk for cardiovascular mortality in oral 1alpha-hydroxy vitamin D3 users in a haemodialysis population. Nephrol Dial Transplant. 2004;19(1):179–84.

    Article  CAS  PubMed  Google Scholar 

  21. Teng M, Wolf M, Ofsthun MN, Lazarus JM, Hernán MA, Camargo CA Jr, Thadhani R. Activated injectable vitamin D and hemodialysis survival: a historical cohort study. J Am Soc Nephrol. 2005;16(4):1115–25.

    Article  CAS  PubMed  Google Scholar 

  22. Sugiura S, Inaguma D, Kitagawa A, Murata M, Kamimura Y, Sendo S, Hamaguchi K, Nagaya H, Tatematsu M, Kurata K, Yuzawa Y, Matsuo S. Administration of alfacalcidol for patients with predialysis chronic kidney disease may reduce cardiovascular disease events. Clin Exp Nephrol. 2010;14(1):43–50.

    Article  CAS  PubMed  Google Scholar 

  23. Shoben AB, Rudser KD, de Boer IH, Young B, Kestenbaum B. Association of oral calcitriol with improved survival in nondialyzed CKD. J Am Soc Nephrol. 2008;19(8):1613–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tsujimoto Y, Tahara H, Shoji T, Emoto M, Koyama H, Ishimura E, Tabata T, Nishizawa Y, Inaba M. Active vitamin D and acute respiratory infections in dialysis patients. Clin J Am Soc Nephrol. 2011;6(6):1361–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Obi Y, Hamano T, Fujii N, Wada A, Masakane I, the Committee of Renal Data Registry of the Japanese Society for Dialysis Therapy. Vitamin D receptor activator use and cause-specific death among dialysis patients: a nationwide cohort study using coarsened exact matching. Sci Rep. (in press).

  26. Tanaka S, Ninomiya T, Taniguchi M, Fujisaki K, Tokumoto M, Hirakata H, Ooboshi H, Kitazono T, Tsuruya K. Comparison of oral versus intravenous vitamin D receptor activator in reducing infection-related mortality in hemodialysis patients: the Q-Cohort Study. Nephrol Dial Transplant. 2016;31(7):1152–60.

    Article  PubMed  Google Scholar 

  27. Martineau AR, Wilkinson KA, Newton SM, Floto RA, Norman AW, Skolimowska K, Davidson RN, Sørensen OE, Kampmann B, Griffiths CJ, Wilkinson RJ. IFN-gamma- and TNF-independent vitamin D-inducible human suppression of mycobacteria: the role of cathelicidin LL-37. J Immunol. 2007;178(11):7190–8.

    Article  CAS  PubMed  Google Scholar 

  28. Thadhani R, Appelbaum E, Pritchett Y, Chang Y, Wenger J, Tamez H, Bhan I, Agarwal R, Zoccali C, Wanner C, Lloyd-Jones D, Cannata J, Thompson BT, Andress D, Zhang W, Packham D, Singh B, Zehnder D, Shah A, Pachika A, Manning WJ, Solomon SD. Vitamin D therapy and cardiac structure and function in patients with chronic kidney disease: the PRIMO randomized controlled trial. JAMA. 2012;307(7):674–84.

    Article  CAS  PubMed  Google Scholar 

  29. Obi Y, Ichimaru N, Hamano T, Tomida K, Matsui I, Fujii N, Okumi M, Kaimori JY, Yazawa K, Kokado Y, Tsubakihara Y, Nonomura N, Rakugi H, Takahara S, Isaka Y. Orally active vitamin D for potential chemoprevention of post-transplant malignancy. Cancer Prev Res. 2012;5(10):1229–35.

    Article  CAS  Google Scholar 

  30. Abe H, Iehara N, Utsunomiya K, Kita T, Doi T. A vitamin D analog regulates mesangial cell smooth muscle phenotypes in a transforming growth factor-beta type II receptor-mediated manner. J Biol Chem. 1999;274(30):20874–8.

  31. Matsui I, Hamano T, Tomida K, Inoue K, Takabatake Y, Nagasawa Y, Kawada N, Ito T, Kawachi H, Rakugi H, Imai E, Isaka Y. Active vitamin D and its analogue, 22-oxacalcitriol, ameliorate puromycin aminonucleoside-induced nephrosis in rats. Nephrol Dial Transplant. 2009;24:2354–61.

    Article  CAS  PubMed  Google Scholar 

  32. Park JW, Bae EH, Kim IJ, Ma SK, Choi C, Lee J, Kim SW. Renoprotective effects of paricalcitol on gentamicin-induced kidney injury in rats. Am J Physiol Renal Physiol. 2010;298(2):F301–13.

    Article  CAS  PubMed  Google Scholar 

  33. He W, Kang YS, Dai C, Liu Y. Blockade of Wnt/β-catenin signaling by paricalcitol ameliorates proteinuria and kidney injury. J Am Soc Nephrol. 2011;22(1):90–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ito I, Waku T, Aoki M, Abe R, Nagai Y, Watanabe T, Nakajima Y, Ohkido I, Yokoyama K, Miyachi H, Shimizu T, Murayama A, Kishimoto H, Nagasawa K, Yanagisawa J. A nonclassical vitamin D receptor pathway suppresses renal fibrosis. J Clin Invest. 2013;123(11):4579–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Inoue K, Matsui I, Hamano T, Fujii N, Shimomura A, Nakano C, Kusunoki Y, Takabatake Y, Hirata M, Nishiyama A, Tsubakihara Y, Isaka Y, Rakugi H. Maxacalcitol ameliorates tubulointerstitial fibrosis in obstructed kidneys by recruiting PPM1A/VDR complex to pSmad3. Lab Invest. 2012;92(12):1686–97.

    Article  CAS  PubMed  Google Scholar 

  36. de Zeeuw D, Agarwal R, Amdahl M, Audhya P, Coyne D, Garimella T, Parving HH, Pritchett Y, Remuzzi G, Ritz E, Andress D. Selective vitamin D receptor activation with paricalcitol for reduction of albuminuria in patients with type 2 diabetes (VITAL study): a randomised controlled trial. Lancet. 2010;376:1543–51.

    Article  PubMed  Google Scholar 

  37. de Borst MH, Hajhosseiny R, Tamez H, Wenger J, Thadhani R, Goldsmith DJ. Active vitamin D treatment for reduction of residual proteinuria: a systematic review. J Am Soc Nephrol. 2013;24(11):1863–71.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Arai Y, Kanda E, Iimori S, Naito S, Noda Y, Kawasaki T, Sato H, Ando R, Sasaki S, Sohara E, Okado T, Rai T, Uchida S. The use of vitamin D analogs is independently associated with the favorable renal prognosis in chronic kidney disease stages 4-5: the CKD-ROUTE study. Clin Exp Nephrol. In press.

  39. Block GA, Spiegel DM, Ehrlich J, Mehta R, Lindbergh J, Dreisbach A, Raggi P. Effects of sevelamer and calcium on coronary artery calcification in patients new to hemodialysis. Kidney Int. 2005;68(4):1815–24.

    Article  CAS  PubMed  Google Scholar 

  40. Russo D, Miranda I, Ruocco C, Battaglia Y, Buonanno E, Manzi S, Russo L, Scafarto A, Andreucci VE. The progression of coronary artery calcification in predialysis patients on calcium carbonate or sevelamer. Kidney Int. 2007;72(10):1255–61.

    Article  CAS  PubMed  Google Scholar 

  41. Kakuta T, Tanaka R, Hyodo T, Suzuki H, Kanai G, Nagaoka M, Takahashi H, Hirawa N, Oogushi Y, Miyata T, Kobayashi H, Fukagawa M, Saito A. Effect of sevelamer and calcium-based phosphate binders on coronary artery calcification and accumulation of circulating advanced glycation end products in hemodialysis patients. Am J Kidney Dis. 2011;57(3):422–31.

    Article  CAS  PubMed  Google Scholar 

  42. Ohtake T, Kobayashi S, Oka M, Furuya R, Iwagami M, Tsutsumi D, Mochida Y, Maesato K, Ishioka K, Moriya H, Hidaka S. Lanthanum carbonate delays progression of coronary artery calcification compared with calcium-based phosphate binders in patients on hemodialysis: a pilot study. J Cardiovasc Pharmacol Ther. 2013;18(5):439–46.

    Article  CAS  PubMed  Google Scholar 

  43. Komaba H, Kakuta T, Suzuki H, Hida M, Suga T, Fukagawa M. Survival advantage of lanthanum carbonate for hemodialysis patients with uncontrolled hyperphosphatemia. Nephrol Dial Transplant. 2015;30(1):107–14.

    Article  PubMed  Google Scholar 

  44. Goto S, Komaba H, Moriwaki K, Fujimori A, Shibuya K, Nishioka M, Kim JI, Yoshiya K, Shin J, Hasegawa H, Taniguchi M, Fujii H, Nishi S, Kamae I, Fukagawa M. Clinical efficacy and cost-effectiveness of lanthanum carbonate as second-line therapy in hemodialysis patients in Japan. Clin J Am Soc Nephrol. 2011;6(6):1375–84.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rodby R, Umanath K, Niecestro R, Jackson JH, Sika M, Lewis JB, Dwyer JP; Collaborative Study Group. Phosphorus binding with ferric citrate is associated with fewer hospitalizations and reduced hospitalization costs. Expert Rev Pharmacoecon Outcomes Res. 2015;15(3):545–50.

  46. Hamano T, Fujii N, Hayashi T, Yamamoto H, Iseki K, Tsubakihara Y. Thresholds of iron markers for iron deficiency erythropoiesis-finding of the Japanese nationwide dialysis registry. Kidney Int Suppl (2011). 2015;5(1):23–32.

  47. Komaba H, Taniguchi M, Wada A, Iseki K, Tsubakihara Y, Fukagawa M. Parathyroidectomy and survival among Japanese hemodialysis patients with secondary hyperparathyroidism. Kidney Int. 2015;88(2):350–9.

    Article  PubMed  Google Scholar 

  48. Scialla JJ, Wolf M. When there will never be a randomized controlled trial. Kidney Int. 2015;88(2):220–2.

    Article  PubMed  Google Scholar 

  49. Fukagawa M, Fukuma S, Onishi Y, Yamaguchi T, Hasegawa T, Akizawa T, Kurokawa K, Fukuhara S. Prescription patterns and mineral metabolism abnormalities in the cinacalcet era: results from the MBD-5D study. Clin J Am Soc Nephrol. 2012;7(9):1473–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Akizawa T, Kurita N, Mizobuchi M, Fukagawa M, Onishi Y, Yamaguchi T, Ellis AR, Fukuma S, Alan Brookhart M, Hasegawa T, Kurokawa K, Fukuhara S. PTH-dependence of the effectiveness of cinacalcet in hemodialysis patients with secondary hyperparathyroidism. Sci Rep. 2016;13(6):19612.

    Article  Google Scholar 

  51. EVOLVE Trial Investigators, Chertow GM, Block GA, Correa-Rotter R, Drüeke TB, Floege J, Goodman WG, Herzog CA, Kubo Y, London GM, Mahaffey KW, Mix TC, Moe SM, Trotman ML, Wheeler DC, Parfrey PS. Effect of cinacalcet on cardiovascular disease in patients undergoing dialysis. N Engl J Med. 2012;367(26):2482–94.

  52. Tanaka M, Yoshida K, Fukuma S, Ito K, Matsushita K, Fukagawa M, Fukuhara S, Akizawa T. Effects of Secondary Hyperparathyroidism Treatment on Improvement in Anemia: Results from the MBD-5D Study. PLoS One. 2016;11(10):e0164865.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Pham PC, Pham PM, Pham PA, Pham SV, Pham HV, Miller JM, Yanagawa N, Pham PT. Lower serum magnesium levels are associated with more rapid decline of renal function in patients with diabetes mellitus type 2. Clin Nephrol. 2005;63(6):429–36.

    Article  CAS  PubMed  Google Scholar 

  54. Holzmacher R, Kendziorski C, Michael Hofman R, Jaffery J, Becker B, Djamali A. Low serum magnesium is associated with decreased graft survival in patients with chronic cyclosporin nephrotoxicity. Nephrol Dial Transplant. 2005;20(7):1456–62.

    Article  CAS  PubMed  Google Scholar 

  55. Ishimura E, Okuno S, Yamakawa T, Inaba M, Nishizawa Y. Serum magnesium concentration is a significant predictor of mortality in maintenance hemodialysis patients. Magnes Res. 2007;20(4):237–44.

    CAS  PubMed  Google Scholar 

  56. Kanbay M, Yilmaz MI, Apetrii M, Saglam M, Yaman H, Unal HU, Gok M, Caglar K, Oguz Y, Yenicesu M, Cetinkaya H, Eyileten T, Acikel C, Vural A, Covic A. Relationship between serum magnesium levels and cardiovascular events in chronic kidney disease patients. Am J Nephrol. 2012;36(3):228–37.

    Article  CAS  PubMed  Google Scholar 

  57. Sakaguchi Y, Shoji T, Hayashi T, Suzuki A, Shimizu M, Mitsumoto K, Kawabata H, Niihata K, Okada N, Isaka Y, Rakugi H, Tsubakihara Y. Hypomagnesemia in type 2 diabetic nephropathy: a novel predictor of end-stage renal disease. Diabetes Care. 2012;35(7):1591–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Van Laecke S, Nagler EV, Verbeke F, Van Biesen W, Vanholder R. Hypomagnesemia and the risk of death and GFR decline in chronic kidney disease. Am J Med. 2013;126(9):825–31.

    Article  PubMed  Google Scholar 

  59. Sakaguchi Y, Fujii N, Shoji T, Hayashi T, Rakugi H, Isaka Y. Hypomagnesemia is a significant predictor of cardiovascular and non-cardiovascular mortality in patients undergoing hemodialysis. Kidney Int. 2014;85(1):174–81.

    Article  CAS  PubMed  Google Scholar 

  60. João Matias P, Azevedo A, Laranjinha I, Navarro D, Mendes M, Ferreira C, Amaral T, Jorge C, Aires I, Gil C, Ferreira A. Lower serum magnesium is associated with cardiovascular risk factors and mortality in haemodialysis patients. Blood Purif. 2014;38(3–4):244–52.

    Article  PubMed  Google Scholar 

  61. Fein P, Weiss S, Ramos F, Singh P, Chattopadhyay J, Avram MM. Serum magnesium concentration is a significant predictor of mortality in peritoneal dialysis patients. Adv Perit Dial. 2014;30:90–3.

    PubMed  Google Scholar 

  62. Sakaguchi Y, Fujii N, Shoji T, Hayashi T, Rakugi H, Iseki K, Tsubakihara Y, Isaka Y. Committee of Renal Data Registry of the Japanese Society for Dialysis Therapy. Magnesium modifies the cardiovascular mortality risk associated with hyperphosphatemia in patients undergoing hemodialysis: a cohort study. PLoS One. 2014;9(12):e116273.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sakaguchi Y, Iwatani H, Hamano T, Tomida K, Kawabata H, Kusunoki Y, Shimomura A, Matsui I, Hayashi T, Tsubakihara Y, Isaka Y, Rakugi H. Magnesium modifies the association between serum phosphate and the risk of progression to end-stage kidney disease in patients with non-diabetic chronic kidney disease. Kidney Int. 2015;88(4):833–42.

    Article  CAS  PubMed  Google Scholar 

  64. Li L, Streja E, Rhee CM, Mehrotra R, Soohoo M, Brunelli SM, Kovesdy CP, Kalantar-Zadeh K. Hypomagnesemia and Mortality in Incident Hemodialysis Patients. Am J Kidney Dis. 2015;66(6):1047–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lacson E Jr, Wang W, Ma L, Passlick-Deetjen J. Serum Magnesium and Mortality in Hemodialysis Patients in the United States: A Cohort Study. Am J Kidney Dis. 2015;66(6):1056–66.

    Article  CAS  PubMed  Google Scholar 

  66. de Roij van Zuijdewijn CL, Grooteman MP, Bots ML, Blankestijn PJ, Steppan S, Büchel J, Groenwold RH, Brandenburg V, van den Dorpel MA, Ter Wee PM, Nubé MJ, Vervloet MG. Serum magnesium and sudden death in european hemodialysis patients. PLoS One. 2015;10(11):e0143104.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kurita N, Akizawa T, Fukagawa M, Onishi Y, Kurokawa K, Fukuhara S. Contribution of dysregulated serum magnesium to mortality in hemodialysis patients with secondary hyperparathyroidism: a 3-year cohort study. Clin Kidney J. 2015;8(6):744–52.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Tin A, Grams ME, Maruthur NM, Astor BC, Couper D, Mosley TH, Selvin E, Coresh J, Kao WH. Results from the Atherosclerosis Risk in Communities study suggest that low serum magnesium is associated with incident kidney disease. Kidney Int. 2015;87(4):820–7.

    Article  CAS  PubMed  Google Scholar 

  69. Cai K, Luo Q, Dai Z, Zhu B, Fei J, Xue C, Wu D. Hypomagnesemia Is Associated with Increased Mortality among Peritoneal Dialysis Patients. PLoS ONE. 2016;11(3):e0152488.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Yang X, Soohoo M, Streja E, Rivara MB, Obi Y, Adams SV, Kalantar-Zadeh K, Mehrotra R. Serum Magnesium Levels and Hospitalization and Mortality in Incident Peritoneal Dialysis Patients: A Cohort Study. Am J Kidney Dis. 2016.

  71. Van Laecke S, Vermeiren P, Nagler EV, Caluwe R, De Wilde M, Van der Vennet M, Peeters P, Randon C, Vermassen F, Vanholder R, Van Biesen W. Magnesium and infection risk after kidney transplantation: An observational cohort study. J Infect. 2016;73(1):8–17.

    Article  PubMed  Google Scholar 

  72. Ago R, Shindo T, Banshodani M, Shintaku S, Moriishi M, Masaki T, Kawanishi H. Hypomagnesemia as a predictor of mortality in hemodialysis patients and the role of proton pump inhibitors: a cross-sectional, 1-year, retrospective cohort study. Hemodial Int. 2016. doi:10.1111/hdi.12437. [Epub ahead of print].

  73. Ferrè S, Baldoli E, Leidi M, Maier JA. Magnesium deficiency promotes a pro-atherogenic phenotype in cultured human endothelial cells via activation of NFkB. Biochim Biophys Acta. 2010;1802(11):952–8.

    Article  PubMed  Google Scholar 

  74. Maier JA, Malpuech-Brugère C, Zimowska W, Rayssiguier Y, Mazur A. Low magnesium promotes endothelial cell dysfunction: implications for atherosclerosis, inflammation and thrombosis. Biochim Biophys Acta. 2004;1689(1):13–21.

    Article  CAS  PubMed  Google Scholar 

  75. Paravicini TM, Yogi A, Mazur A, Touyz RM. Dysregulation of vascular TRPM7 and annexin-1 is associated with endothelial dysfunction in inherited hypomagnesemia. Hypertension. 2009;53(2):423–9.

    Article  CAS  PubMed  Google Scholar 

  76. Shechter M, Sharir M, Labrador MJ, Forrester J, Silver B, Bairey Merz CN. Oral magnesium therapy improves endothelial function in patients with coronary artery disease. Circulation. 2000;102(19):2353–8.

    Article  CAS  PubMed  Google Scholar 

  77. Barbagallo M, Dominguez LJ, Galioto A, Pineo A, Belvedere M. Oral magnesium supplementation improves vascular function in elderly diabetic patients. Magnes Res. 2010;23(3):131–7.

    CAS  PubMed  Google Scholar 

  78. Zhang X, Li Y, Del Gobbo LC, Rosanoff A, Wang J, Zhang W, Song Y. Effects of magnesium supplementation on blood pressure: a meta-analysis of randomized double-blind placebo-controlled trials. Hypertension. 2016;68(2):324–33.

    Article  CAS  PubMed  Google Scholar 

  79. Veronese N, Watutantrige SF, Luchini C, Solmi M, Sartore G, Sergi G, Manzato E, Barbagallo M, Maggi S, Stubbs B. Effect of magnesium supplementation on glucose metabolism in people with or at risk of diabetes: a systematic review and meta-analysis of double-blind randomized controlled trials. Eur J Clin Nutr. 2016. doi:10.1038/ejcn.2016.154. [Epub ahead of print].

  80. Del Gobbo LC, Imamura F, Wu JH, de Oliveira Otto MC, Chiuve SE, Mozaffarian D. Circulating and dietary magnesium and risk of cardiovascular disease: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr. 2013;98(1):160–73.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Qu X, Jin F, Hao Y, Li H, Tang T, Wang H, Yan W, Dai K. Magnesium and the risk of cardiovascular events: a meta-analysis of prospective cohort studies. PLoS One. 2013;8(3):e57720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fang X, Liang C, Li M, Montgomery S, Fall K, Aaseth J, Cao Y. Dose-response relationship between dietary magnesium intake and cardiovascular mortality: A systematic review and dose-based meta-regression analysis of prospective studies. J Trace Elem Med Biol. 2016. doi:10.1016/j.jtemb.2016.03.014 [Epub ahead of print].

  83. Cheng PT, Grabher JJ, LeGeros RZ. Effects of magnesium on calcium phosphate formation. Magnesium. 1988;7:123–32.

    CAS  PubMed  Google Scholar 

  84. Montezano AC, Zimmerman D, Yusuf H, Burger D, Chignalia AZ, Wadhera V, et al. Vascular smooth muscle cell differentiation to an osteogenic phenotype involves TRPM7 modulation by magnesium. Hypertension. 2010;56:453–62.

    Article  CAS  PubMed  Google Scholar 

  85. Kircelli F, Peter ME, Sevinc Ok E, Celenk FG, Yilmaz M, Steppan S, Asci G, Ok E, Passlick-Deetjen J. Magnesium reduces calcification in bovine vascular smooth muscle cells in a dose-dependent manner. Nephrol Dial Transplant. 2012;27:514–21.

    Article  CAS  PubMed  Google Scholar 

  86. Salem S, Bruck H, Bahlmann FH, Peter M, Passlick-Deetjen J, Kretschmer A, Steppan S, Volsek M, Kribben A, Nierhaus M, Jankowski V, Zidek W, Jankowski J. Relationship between magnesium and clinical biomarkers on inhibition of vascular calcification. Am J Nephrol. 2012;35:31–9.

    Article  CAS  PubMed  Google Scholar 

  87. Louvet L, Büchel J, Steppan S, Passlick-Deetjen J, Massy ZA. Magnesium prevents phosphate-induced calcification in human aortic vascular smooth muscle cells. Nephrol Dial Transplant. 2013;28:869–78.

    Article  CAS  PubMed  Google Scholar 

  88. de Oca Montes, Guerrero F, Martinez-Moreno JM, Madueño JA, Herencia C, Peralta A, Almaden Y, Lopez I, Aguilera-Tejero E, Gundlach K, Büchel J, Peter ME, Passlick-Deetjen J, Rodriguez M, Muñoz-Castañeda JR. Magnesium inhibits Wnt/β-catenin activity and reverses the osteogenic transformation of vascular smooth muscle cells. PLoS One. 2014;9:e89525.

    Article  Google Scholar 

  89. Louvet L, Bazin D, Büchel J, Steppan S, Passlick-Deetjen J, Massy ZA. Characterisation of calcium phosphate crystals on calcified human aortic vascular smooth muscle cells and potential role of magnesium. PLoS ONE. 2015;10:e0115342.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Xu J, Bai Y, Jin J, Zhang J, Zhang S, Cui L, Zhang H. Magnesium modulates the expression levels of calcification-associated factors to inhibit calcification in a time-dependent manner. Exp Ther Med. 2015;9:1028–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Bai Y, Zhang J, Xu J, Cui L, Zhang H, Zhang S, Feng X. Magnesium prevents β-glycerophosphate-induced calcification in rat aortic vascular smooth muscle cells. Biomed Rep. 2015;3:593–7.

    PubMed  PubMed Central  Google Scholar 

  92. Louvet L, Metzinger L, Büchel J, Steppan S, Massy ZA. Magnesium attenuates phosphate-induced deregulation of a microrna signature and prevents modulation of smad1 and osterix during the course of vascular calcification. Biomed Res Int. 2016; doi:10.1155/2016/7419524 (Epub 2016 Jun 22).

  93. Pasch A, Farese S, Gräber S, Wald J, Richtering W, Floege J, Jahnen-Dechent W. Nanoparticle-based test measures overall propensity for calcification in serum. J Am Soc Nephrol. 2012;23(10):1744–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Aghagolzadeh P, Bachtler M, Bijarnia R, Jackson C, Smith ER, Odermatt A, Radpour R, Pasch A. Calcification of vascular smooth muscle cells is induced by secondary calciprotein particles and enhanced by tumor necrosis factor-α. Atherosclerosis. 2016;251:404–14.

    Article  CAS  PubMed  Google Scholar 

  95. Tzanakis IP, Stamataki EE, Papadaki AN, Giannakis N, Damianakis NE, Oreopoulos DG. Magnesium retards the progress of the arterial calcifications in hemodialysis patients: a pilot study. Int Urol Nephrol. 2014;46(11):2199–205.

    Article  CAS  PubMed  Google Scholar 

  96. Wyskida K, Witkowicz J, Chudek J, Więcek A. Daily magnesium intake and hypermagnesemia in hemodialysis patients with chronic kidney disease. J Ren Nutr. 2012;22(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  97. Kalantar-Zadeh K, Gutekunst L, Mehrotra R, Kovesdy CP, Bross R, Shinaberger CS, Noori N, Hirschberg R, Benner D, Nissenson AR, Kopple JD. Understanding sources of dietary phosphorus in the treatment of patients with chronic kidney disease. Clin J Am Soc Nephrol. 2010;5(3):519–30.

    Article  CAS  PubMed  Google Scholar 

  98. Luis D, Zlatkis K, Comenge B, García Z, Navarro JF, Lorenzo V, Carrero JJ. Dietary quality and adherence to dietary recommendations in patients undergoing hemodialysis. J Ren Nutr. 2016;26(3):190–5.

    Article  PubMed  Google Scholar 

  99. Elsharkawy MM, Youssef AM, Zayoon MY. Hemodial Int. Intradialytic changes of serum magnesium and their relation to hypotensive episodes in hemodialysis patients on different dialysates. Hemodial Int. 2006;10(Suppl 2):S16–23.

    Article  PubMed  Google Scholar 

  100. Pakfetrat M, Roozbeh Shahroodi J, Malekmakan L, Zare N, Hashemi Nasab M, Hossein Nikoo M. Is there an association between intradialytic hypotension and serum magnesium changes? Hemodial Int. 2010;14(4):492–7.

    Article  PubMed  Google Scholar 

  101. Kyriazis J, Kalogeropoulou K, Bilirakis L, Smirnioudis N, Pikounis V, Stamatiadis D, Liolia E. Dialysate magnesium level and blood pressure. Kidney Int. 2004;66(3):1221–31.

    Article  CAS  PubMed  Google Scholar 

  102. Covic A, Passlick-Deetjen J, Kroczak M, Büschges-Seraphin B, Ghenu A, Ponce P, Marzell B, de Francisco AL. A comparison of calcium acetate/magnesium carbonate and sevelamer-hydrochloride effects on fibroblast growth factor-23 and bone markers: post hoc evaluation from a controlled, randomized study. Nephrol Dial Transplant. 2013;28(9):2383–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, Hadden D, Turner RC, Holman RR. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321(7258):405–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Action to Control Cardiovascular Risk in Diabetes Study, Gerstein HC, Miller ME, Byington RP, Goff DC Jr, Bigger JT, Buse JB, Cushman WC, Genuth S, Ismail-Beigi F, Grimm RH Jr, Probstfield JL, Simons-Morton DG, Friedewald WT. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358(24):2545–59.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Hamano.

Ethics declarations

Conflict of interest

Employment: None, Consultancies: GlaxoSmithKline, Stock ownership or options: None, Honoraria: T.H. (Torii, Chugai, Otsuka, Kissei, Kyowa-Hakko Kirin), Grants received: T.H. (Bayer). T.H. and R.S belongs to endowed department by Chugai, Torii, Otsuka, Kissei, Kyowa-Hakko Kirin, Terumo, Fuso pharmaceutical industries ltd. This supplement is supported by the Grants from The Japanese Society for Kidney Bone Disease (JSKBD) and from the Research Meeting on Kidney and Metabolic Bone Disease.

Informed consent, human and animal rights

This paper is a review article. Therefore, informed consents and ethical approvals were obtained in each cited article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 187 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamano, T., Sakaguchi, Y., Fujii, N. et al. Clinical features of CKD-MBD in Japan: cohort studies and registry. Clin Exp Nephrol 21 (Suppl 1), 9–20 (2017). https://doi.org/10.1007/s10157-016-1367-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-016-1367-4

Keywords

Navigation