Skip to main content
Log in

Does significant renal ablation truly and invariably lead to hyperfiltration and progressive chronic kidney disease?

  • Review article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

It is generally believed that significant renal ablation leads to hyperfiltration and eventually progressively worsening chronic kidney disease. The data behind this belief have not been scrutinized intensively. More importantly, the above belief leads many physicians to manage patients differently than they otherwise would manage. Here, we examine the data behind whether hyperfiltration occurs when patients lose kidney mass (by excision or by disease) and whether the hyperfiltration is uniformly injurious.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chanutin A, Ferris EB. Experimental renal insufficiency produced by partial nephrectomy. Arch Intern Med. 1932;49(5):767–87.

    Article  CAS  Google Scholar 

  2. Shimamura T, Morrison AB. A progressive glomerulosclerosis occurring in partial five–sixths nephrectomized rats. Am J Pathol. 1975;79(1):95–106.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hullstrom M. Development of structural kidney damage in spontaneously hypertensive rats. J Hypertens. 2012;30:1087–91.

    Article  Google Scholar 

  4. Hostetter TH, Olson JL, Rennke HG, Venkatachalam MA, Brenner BM. Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Am J Physiol. 1981;241(1):F85–93.

    CAS  PubMed  Google Scholar 

  5. Olson JL, Hostetter TH, Rennke HG, Brenner BM, Venkatachalam MA. Altered glomerular permselectivity and progressive sclerosis following extreme ablation of renal mass. Kidney Int. 1982;22(2):112–26.

    Article  CAS  PubMed  Google Scholar 

  6. Anderson S, Rennke HG, Brenner BM. Therapeutic advantage of converting enzyme inhibitors in arresting progressive renal disease associated with systemic hypertension in the rat. J Clin Invest. 1986;77(6):1993–2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Griffin KA, Picken M, Bidani AK. Method of renal mass reduction is a critical modulator of subsequent hypertension and glomerular injury. J Am Soc Nephrol. 1994;4(12):2023–31.

    CAS  PubMed  Google Scholar 

  8. Griffin KA, Picken MM, Churchill M, Churchill P, Bidani AK. Functional and structural correlates of glomerulosclerosis after renal mass reduction in the rat. J Am Soc Nephrol. 2000;11(3):497–506.

    CAS  PubMed  Google Scholar 

  9. Yoshida Y, Fogo A, Ichikawa I. Glomerular hemodynamic changes vs hypertrophy in experimental glomerular sclerosis. Kidney Int. 1989;35:654–60.

    Article  CAS  PubMed  Google Scholar 

  10. Bradford JR. The results following partial nephrectomy and the influence of the kidney on metabolism. J Physiol. 1899;23(6):415–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bainbridge FA, Beddard AP. The relation of the kidneys to metabolism. Proc R Soc. 1907;79B:75–83.

    Article  Google Scholar 

  12. Abdi R, Sandroni S, Tolouian R. The inception and formation of the theory of hyperfiltration through the ages. Iran J Kidney Dis. 2012;6(2):94–7.

    PubMed  Google Scholar 

  13. Hostetter TH. Hyperfiltration and glomerulosclerosis. Seminol Nephrol. 2003;23(2):194–9.

    Article  CAS  Google Scholar 

  14. Vincenti F, Amend WJ, Kaysen G, Feduska N, Birnbaum J, Duca R, et al. Long-term renal function in kidney donors. Sustained compensatory hyperfiltration with no adverse effects. Transplantation. 1983;36(6):626–9.

    Article  CAS  PubMed  Google Scholar 

  15. Krohn AG, Ogden DA, Holmes JH. Renal function in 29 healthy adults before and after nephrectomy. JAMA. 1966;196(4):322–4.

    Article  CAS  PubMed  Google Scholar 

  16. Flanigan WJ, Burns RO, Takacs FJ, Merrill JP. Serial studies of glomerular filtration rate and renal plasma flow in kidney transplant donors, identical twins, and allograft recipients. Am J Surg. 1968;116(5):788–94.

    Article  CAS  PubMed  Google Scholar 

  17. Lam NN, Lentine KL, Levey AS, Kasiske BL, Garg AX. Long-term medical risks to the living kidney donor. Nat Rev Nephrol. 2015;11(7):411–9.

    Article  PubMed  Google Scholar 

  18. Mjøen G, Hallan S, Hartmann A, Foss A, Midtvedt K, Øyen O, et al. Long-term risks for kidney donors. Kidney Int. 2014;86(1):162–7.

    Article  PubMed  Google Scholar 

  19. Muzaale AD, Massie AB, Wang M-C, Montgomery RA, McBride MA, Wainright JL, et al. Risk of end-stage renal disease following live kidney donation. JAMA. 2014;311(6):579–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Grams ME, Chow EKH, Segev DL, Coresh J. Lifetime incidence of CKD stages 3-5 in the United States. Am J Kidney Dis. 2013;62(2):245–52.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sanna-Cherchi S, Ravani P, Corbani V, Parodi S, Haupt R, Piaggio G, et al. Renal outcome in patients with congenital anomalies of the kidney and urinary tract. Kidney Int. 2009;76:528–33.

    Article  PubMed  Google Scholar 

  22. Westland R, Schreuder MF, Bokenkamp A, Spreeuwenberg MD, Van Wijk JAE. Renal injury in children with a solitary functioning kidney—the KIMINO study. Nephrol Dial Transplant. 2011;26:1533–41.

    Article  PubMed  Google Scholar 

  23. Mavinkurve-Groothuis AMC, Van de Kracht F, Westland R, Van Wijk JAE, Loonen JJ, Schreuder MF. Long-term follow-up of blood pressure and glomerular filtration rate in patients with a solitary functioning kidney: a comparison between Wilms tumor survivors and nephrectomy for other reasons. Pediatr Nephrol. 2016;31:435–41.

    Article  PubMed  Google Scholar 

  24. Mitch WE, Walser M, Buffington GA, Lemann J. A simple method of estimating progression of chronic renal failure. Lancet. 1976;2(7999):1326–8.

    Article  CAS  PubMed  Google Scholar 

  25. Heaf JG, Mortensen LS. Uraemia progression in chronic kidney disease stages 3–5 is not constant. Nephron Clin Pract. 2011;118(4):c367–74.

    Article  PubMed  Google Scholar 

  26. Rutsky EA, Dubovsky EV, Kirk KA. Long-term follow-up of a human subject with a remnant kidney. Am J Kidney Dis. 1991;18(4):509–13.

    Article  CAS  PubMed  Google Scholar 

  27. Foster MH, Sant GR, Donohoe JF, Harrington JT. Prolonged survival with a remnant kidney. Am J Kidney Dis. 1991;17(3):261–5.

    Article  CAS  PubMed  Google Scholar 

  28. Novick AC, Gephardt G, Guz B, Steinmuller D, Tubbs RR. Long-term follow-up after partial removal of a solitary kidney. N Engl J Med. 1991;10325(15):1058–62.

    Article  Google Scholar 

  29. Lee HC, Mitchell HC, Van Dreal P, Pettinger WA. Hyperfiltration and conservation of renal function in hypertensive nephrosclerosis patients. Am J Kidney Dis. 1993;21(Suppl 1):68–74.

    Article  CAS  PubMed  Google Scholar 

  30. Klahr S, Levey AS, Beck GJ, Caggiula AW, Hunsicker L, Kusek JW, et al. The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of diet in Renal Disease Study Group. N Engl J Med. 1994;330(13):877–84.

    Article  CAS  PubMed  Google Scholar 

  31. Moriya T, Tsuchiya A, Okizaki S-I, Hayashi A, Tanaka K, Shichiri M. Glomerular hyperfiltration and increased glomerular filtration surface are associated with renal function decline in normo- and microalbuminuric type 2 diabetes. Kidney Int. 2012;81(5):486–93.

    Article  CAS  PubMed  Google Scholar 

  32. Magee GM, Bilous RW, Cardwell CR, Hunter SJ, Kee F, Fogarty DG. Is hyperfiltration associated with the future risk of developing diabetic nephropathy? A meta-analysis. Diabetologia. 2009;52(4):691–7.

    Article  CAS  PubMed  Google Scholar 

  33. Amin R, Turner C, van Aken S, Bahu TK, Watts A, Lindsell DRM, et al. The relationship between microalbuminuria and glomerular filtration rate in young type 1 diabetic subjects: the Oxford Regional Prospective Study. Kidney Int. 2005;68(4):1740–9.

    Article  PubMed  Google Scholar 

  34. Ficociello LH, Perkins BA, Roshan B, Weinberg JM, Aschengrau A, Warram JH, et al. Renal hyperfiltration and the development of microalbuminuria in type 1 diabetes. Diabetes Care. 2009;32(5):889–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Thomas MC, Moran JL, Harjutsalo V, Thorn L, Wadén J, Saraheimo M, et al. Hyperfiltration in type 1 diabetes: does it exist and does it matter for nephropathy? Diabetologia. 2012;55(5):1505–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Sam.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

This article does not contain any studies with human participants or animals performed by any of the authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, A., Sam, R. Does significant renal ablation truly and invariably lead to hyperfiltration and progressive chronic kidney disease?. Clin Exp Nephrol 21, 367–374 (2017). https://doi.org/10.1007/s10157-016-1342-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-016-1342-0

Keywords

Navigation