Skip to main content

Advertisement

Log in

Klotho attenuates renal hypertrophy and glomerular injury in Ins2Akita diabetic mice

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Expression of klotho, the renoprotective anti-aging gene, is decreased in diabetic model kidneys. We hypothesized that klotho protein attenuates renal hypertrophy and glomerular injury in a mouse model of diabetic nephropathy.

Methods

Klotho transgenic (KLTG) mice were crossed with spontaneously diabetic Ins2Akita (AKITA) mice. Glomerular morphology, macrophage infiltration, urinary albumin excretion and urinary 8-hydroxy-2-deoxy guanosine excretion were examined. In vitro, human glomerular endothelial cells were stimulated with high glucose with or without recombinant klotho, and calpain activity and proinflammatory cytokine expressions were measured.

Results

We found that klotho protein overexpression attenuates renal hypertrophy and glomerular injury in this mouse model of diabetic nephropathy. Klotho overexpression attenuated renal hypertrophy, albuminuria, glomerular mesangial expansion, and endothelial glycocalyx loss in the AKITA mice. AKITA mice exhibit high levels of urinary 8-hydroxy-2-deoxy guanosine excretion. In the presence of klotho overexpression, this effect was reversed. In addition, the glomerular macrophage infiltration characteristic of AKITA mice was attenuated in KLTG-AKITA mice. In human glomerular endothelial cells, high glucose induced calpain activity. This effect was suppressed by expression of recombinant klotho, which also suppressed the induction of proinflammatory cytokines.

Conclusion

Our data suggest klotho protein protects against diabetic nephropathy through multiple pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

KLTG:

Klotho transgenic

AKITA:

Spontaneously diabetic Ins2Akita

IGF-1:

Insulin-like growth factor-1

8-OHdG:

8-Hydroxy-2-deoxy guanosine

ESL:

Endothelial surface layer

hGECs:

Human glomerular endothelial cells

Ccl2:

C–C motif chemokine 2

Icam1:

Intercellular adhesion molecule-1

Vcam1:

Vascular cell adhesion molecule-1

MnSOD:

Manganese superoxide dismutase

WT:

Wild type

References

  1. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabeshima YI. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390:45–51.

    Article  CAS  PubMed  Google Scholar 

  2. Haruna Y, Kashihara N, Satoh M, Tomita N, Namikoshi T, Sasaki T, Fujimori T, Xie P, Kanwar YS. Amelioration of progressive renal injury by genetic manipulation of Klotho gene. Proc Natl Acad Sci USA. 2007;104:2331–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Satoh M, Nagasu H, Morita Y, Yamaguchi TP, Kanwar YS, Kashihara N. Klotho protects against mouse renal fibrosis by inhibiting Wnt signaling. Am J Physiol Renal Physiol. 2012;303:F1641–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nagasu H, Satoh M, Kuwabara A, Yorimitsu D, Kidokoro K, Nishi Y, Tomita N, Sasaki T, Kashihara N. Overexpression of klotho protein modulates uninephrectomy-induced compensatory renal hypertrophy by suppressing IGF-I signals. Biochem Biophys Res Commun. 2011;407:39–43.

    Article  CAS  PubMed  Google Scholar 

  5. Ruggenenti P, Remuzzi G. Nephropathy of type-2 diabetes mellitus. J Am Soc Nephrol. 1998;9:2157–69.

    CAS  PubMed  Google Scholar 

  6. Asai O, Nakatani K, Tanaka T, Sakan H, Imura A, Yoshimoto S, Samejima K, Yamaguchi Y, Matsui M, Akai Y, Konishi N, Iwano M, Nabeshima Y, Saito Y. Decreased renal alpha-Klotho expression in early diabetic nephropathy in humans and mice and its possible role in urinary calcium excretion. Kidney Int. 2012;81:539–47.

    Article  CAS  PubMed  Google Scholar 

  7. Lin Y, Kuro-o M, Sun Z. Genetic deficiency of anti-aging gene klotho exacerbates early nephropathy in STZ-induced diabetes in male mice. Endocrinology. 2013;154:3855–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhao Y, Banerjee S, Dey N, LeJeune WS, Sarkar PS, Brobey R, Rosenblatt KP, Tilton RG, Choudhary S. Klotho depletion contributes to increased inflammation in kidney of the db/db mouse model of diabetes via RelA (serine)536 phosphorylation. Diabetes. 2011;60:1907–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yoshioka M, Kayo T, Ikeda T, Koizumi A. A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice. Diabetes. 1997;46:887–94.

    Article  CAS  PubMed  Google Scholar 

  10. Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, McGuinness OP, Chikuda H, Yamaguchi M, Kawaguchi H, Shimomura I, Takayama Y, Herz J, Kahn CR, Rosenblatt KP, Kuro-o M. Suppression of aging in mice by the hormone Klotho. Science. 2005;309:1829–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nagasu H, Satoh M, Fujimoto S, Tomita N, Sasaki T, Kashihara N. Azelnidipine attenuates glomerular damage in Dahl salt-sensitive rats by suppressing sympathetic nerve activity. Hypertens Res. 2012;35:348–55.

    Article  CAS  PubMed  Google Scholar 

  12. Cheng MF, Chen LJ, Cheng JT. Decrease of Klotho in the kidney of streptozotocin-induced diabetic rats. J Biomed Biotechnol. 2010;2010:513853.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Aizawa H, Saito Y, Nakamura T, Inoue M, Imanari T, Ohyama Y, Matsumura Y, Masuda H, Oba S, Mise N, Kimura K, Hasegawa A, Kurabayashi M, Kuro-o M, Nabeshima Y, Nagai R. Downregulation of the Klotho gene in the kidney under sustained circulatory stress in rats. Biochem Biophys Res Commun. 1998;249:865–71.

    Article  CAS  PubMed  Google Scholar 

  14. Sastre C, Rubio-Navarro A, Buendia I, Gomez-Guerrero C, Blanco J, Mas S, Egido J, Blanco-Colio LM, Ortiz A, Moreno JA. Hyperlipidemia-associated renal damage decreases Klotho expression in kidneys from ApoE knockout mice. PLoS ONE. 2013;8:e83713.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mogensen CE, Andersen MJ. Increased kidney size and glomerular filtration rate in untreated juvenile diabetes: normalization by insulin-treatment. Diabetologia. 1975;11:221–4.

    Article  CAS  PubMed  Google Scholar 

  16. Thomas MC, Burns WC, Cooper ME. Tubular changes in early diabetic nephropathy. Adv Chronic Kidney Dis. 2005;12:177–86.

    Article  CAS  PubMed  Google Scholar 

  17. Flyvbjerg A, Landau D, Domene H, Hernandez L, Gronbaek H, LeRoith D. The role of growth hormone, insulin-like growth factors (IGFs), and IGF-binding proteins in experimental diabetic kidney disease. Metabolism. 1995;44:67–71.

    Article  CAS  PubMed  Google Scholar 

  18. Flyvbjerg A, Frystyk J, Osterby R, Orskov H. Kidney IGF-I and renal hypertrophy in GH-deficient diabetic dwarf rats. Am J Physiol. 1992;262:E956–62.

    CAS  PubMed  Google Scholar 

  19. Kidokoro K, Satoh M, Channon KM, Yada T, Sasaki T, Kashihara N. Maintenance of endothelial guanosine triphosphate cyclohydrolase I ameliorates diabetic nephropathy. J Am Soc Nephrol. 2013;24:1139–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Haraldsson B, Nystrom J, Deen WM. Properties of the glomerular barrier and mechanisms of proteinuria. Physiol Rev. 2008;88:451–87.

    Article  CAS  PubMed  Google Scholar 

  21. van den Berg BM, Vink H, Spaan JA. The endothelial glycocalyx protects against myocardial edema. Circ Res. 2003;92:592–4.

    Article  PubMed  Google Scholar 

  22. Salmon AH, Ferguson JK, Burford JL, Gevorgyan H, Nakano D, Harper SJ, Bates DO, Peti-Peterdi J. Loss of the endothelial glycocalyx links albuminuria and vascular dysfunction. J Am Soc Nephrol. 2012;23:1339–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kuwabara A, Satoh M, Tomita N, Sasaki T, Kashihara N. Deterioration of glomerular endothelial surface layer induced by oxidative stress is implicated in altered permeability of macromolecules in Zucker fatty rats. Diabetologia. 2010;53:2056–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kuro-o M. Klotho as a regulator of oxidative stress and senescence. Biol Chem. 2008;389:233–41.

    Article  CAS  PubMed  Google Scholar 

  25. Sorimachi H, Hata S, Ono Y. Calpain chronicle–an enzyme family under multidisciplinary characterization. Proc Jpn Acad Ser B Phys Biol Sci. 2011;87:287–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang S, Peng Q, Zhang J, Liu L. Na+/H+ exchanger is required for hyperglycaemia-induced endothelial dysfunction via calcium-dependent calpain. Cardiovasc Res. 2008;80:255–62.

    Article  CAS  PubMed  Google Scholar 

  27. Terada M, Yasuda H, Kikkawa R. Delayed Wallerian degeneration and increased neurofilament phosphorylation in sciatic nerves of rats with streptozocin-induced diabetes. J Neurol Sci. 1998;155:23–30.

    Article  CAS  PubMed  Google Scholar 

  28. Nangle MR, Cotter MA, Cameron NE. The calpain inhibitor, A-705253, corrects penile nitrergic nerve dysfunction in diabetic mice. Eur J Pharmacol. 2006;538:148–53.

    Article  CAS  PubMed  Google Scholar 

  29. Stalker TJ, Skvarka CB, Scalia R. A novel role for calpains in the endothelial dysfunction of hyperglycemia. FASEB J. 2003;17:1511–3.

    CAS  PubMed  Google Scholar 

  30. Manya H, Inomata M, Fujimori T, Dohmae N, Sato Y, Takio K, Nabeshima Y, Endo T. Klotho protein deficiency leads to overactivation of mu-calpain. J Biol Chem. 2002;277:35503–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Ms. Etsuko Yorimasa, Ms. Tomoko Taira, and Miyuki Yokohata for animal care, and Ms. Satomi Hanada and Ms. Keiko Satoh for help with the in vitro assays. This study was supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (No. 23591208) and the Research Project Grant from Kawasaki Medical School (No. 25Ki-91).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoru Satoh.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadoya, H., Satoh, M., Haruna, Y. et al. Klotho attenuates renal hypertrophy and glomerular injury in Ins2Akita diabetic mice. Clin Exp Nephrol 20, 671–678 (2016). https://doi.org/10.1007/s10157-015-1202-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-015-1202-3

Keywords

Navigation