Skip to main content
Log in

Comprehensive clinical approach to renal tubular acidosis

  • Review Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Renal tubular acidosis (RTA) is essentially characterized by normal anion gap and hyperchloremic metabolic acidosis. It is important to understand that despite knowing the disease for 60–70 years, complexities in the laboratory tests and their interpretation still make clinicians cautious to diagnose and label types of tubular disorder. Hence, we are writing this mini-review to emphasize on the step wise approach to RTA with some understanding on its basic etiopathogenesis. This will definitely help to have an accurate interpretation of urine and blood reports in correlation with the clinical condition. RTA can be a primary or secondary defect and results either due to abnormality in bicarbonate ion absorption or hydrogen ion secretion. Primary defects are common in children due to gene mutation or idiopathic nature while secondary forms are more common in adults. We are focusing and explaining here in this review all the clinical and laboratory parameters which are essential for making the diagnosis of RTA and excluding the extrarenal causes of hyperchloremic, normal anion gap metabolic acidosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rodriguez-Soriano J, Edelmann CM Jr. Jr Renal tubular acidosis. Annu Rev Med. 1969;20:363–82.

    Article  CAS  PubMed  Google Scholar 

  2. Pines KL, Mudge GH. Renal tubular acidosis with osteomalacia; Report of 3 cases. Am J Med. 1951;11:302–11.

    Article  CAS  PubMed  Google Scholar 

  3. Elkinton JR. Renal acidosis. Am J Med. 1960;28:165–8.

    Article  CAS  PubMed  Google Scholar 

  4. Morris RC. Renal tubular acidosis. Mechanisms, classification and implications. N Engl J Med. 1969;281:1405–13.

    Article  PubMed  Google Scholar 

  5. Peters M, Jeck N, Reinalter S, et al. Clinical presentation of genetically defined patients with hypokalemic salt-losing tubulopathies. Am J Med. 2002;112:183–90.

    Article  PubMed  Google Scholar 

  6. Maddox DA, Deen WM, Gennari FJ. Control of bicarbonate and fluid reabsorption in the proximal convoluted tubule. Semin Nephrol. 1987;7:72–81.

    CAS  PubMed  Google Scholar 

  7. Rodríguez-Soriano J, Boichis H, Stark H, Edelmann CM Jr. Proximal renal tubular acidosis. A defect in bicarbonate reabsorption with normal urinary acidification. Pediatr Res. 1967;1:81–98.

    Article  PubMed  Google Scholar 

  8. DuBose TD Jr, Good DW, Hamm LL, Wall SM. Ammonium transport in the kidney: new physiological concepts and their clinical implications. J Am Soc Nephrol. 1991;1:1193–203.

    PubMed  Google Scholar 

  9. Halperin ML, Goldstein MB, Richardson RM, Stinebaugh BJ. Distal renal tubular acidosis syndromes: a pathophysiological approach. Am J Nephrol. 1985;5:1–8.

    Article  CAS  PubMed  Google Scholar 

  10. Hamm LL, Hering-smith KS. Acid-base transport in collecting duct. Semin Nephrol. 1993;13:246–55.

    CAS  PubMed  Google Scholar 

  11. Fry AC, Karet FE. Inherited renal acidosis. Physiology. 2007;22:202–11.

    Article  CAS  PubMed  Google Scholar 

  12. Del FA, Cappariello A, Teti A. Genetics, pathogenesis and complications of osteopetrosis. Bone. 2008;42:19–29.

    Article  Google Scholar 

  13. DuBose TD Jr. Hyperkalemic hyperchloremic metabolic acidosis: pathophysiologic insights. Kidney Int. 1997;51:591–602.

    Article  PubMed  Google Scholar 

  14. Rodriguez SJ. Renal tubular acidosis: the clinical entity. J Am Soc Nephrol. 2002;13:2160–70.

    Article  Google Scholar 

  15. Kraut JA, Madias NE. Serum anion gap: its uses and limitations in clinical medicine. Clin J Am Soc Nephrol. 2007;2:162–74.

    Google Scholar 

  16. Dyck RF, Asthana S, Kalra J, West ML, Massey KL. A modification of the urine osmolal gap: an improved method for estimating urine ammonium. Am J Nephrol. 1990;10:359–62.

    Article  CAS  PubMed  Google Scholar 

  17. Kim GH, Han JS, Kim YS, Joo KW, Kim S, Lee JS. Evaluation of urine acidification by urine anion gap and urine osmolal gap in chronic metabolic acidosis. Am J Kidney Dis. 1996;27:42–7.

    Article  CAS  PubMed  Google Scholar 

  18. Walsh SB, Shirley DG, Wrong OM, Unwin RJ. Urinary acidification assessed by simultaneous furosemide and fludrocortisone treatment: an alternative to ammonium chloride. Kidney Int. 2007;71:1310–6.

    Article  CAS  PubMed  Google Scholar 

  19. Kim S, Lee JW, Park J, et al. The urine-blood PCO gradient as adiagnostic index of H+-ATPase defect distal renal tubular acidosis. Kidney Int. 2004;66:761–7.

    Article  CAS  PubMed  Google Scholar 

  20. Gonzalez SB, Voyer LE, Quadri SCB, et al. Determination of urinary bicarbonate with the Henderson–Hasselbalch equation. Comparison using two different methods. Pediatr Nephrol. 2004;19:1371–4.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors have declared that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Sharma.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Gupta, A. & Saxena, S. Comprehensive clinical approach to renal tubular acidosis. Clin Exp Nephrol 19, 556–561 (2015). https://doi.org/10.1007/s10157-015-1119-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-015-1119-x

Keywords

Navigation