Skip to main content

Advertisement

Log in

An update for the controversies and hypotheses of regulating nonthyroidal illness syndrome in chronic kidney diseases

  • Review Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Nonthyroidal illness syndrome (NTIS) is widely found in the patients with chronic kidney disease (CKD) or critical illness. However, the exact pathogenesis and reasonable treatment remain unclear. To identify suitable studies for inclusion in present review, a search for articles using PubMed search engine with combined terms: (thyroid OR hypothyroidism OR hyperthyroidism OR triiodothyronine) AND (glomerulonephritis OR chronic kidney disease OR chronic renal failure OR end stage renal disease OR hemodialysis OR peritoneal dialysis OR kidney transplantation OR renal transplantation) was performed. The bibliographies of relevant articles were also hand searched. The search was updated on November 8, 2013. Mechanisms for the alternations of thyroid hormone concentrations in NTIS are complicated. Inflammatory cytokines and oxidative stress may play pivotal roles in the pathogenesis of NTIS in patients with CKD. It was controversial whether CKD patients with NTIS should be treated with thyroid hormone replacement. N-Acetyl cysteine or sodium bicarbonate may negatively regulate the progress of micro-inflammation in CKD. Large-scale, multi-centered randomized controlled trials should be conducted to verify the NTIS hypothesis in CKD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Docter R, Krenning EP, de Jong M, Hennemann G. The sick euthyroid syndrome: changes in thyroid hormone serum parameters and hormone metabolism. Clin Endocrinol (Oxf). 1993;39(5):499–518.

    Article  CAS  Google Scholar 

  2. Lo JC, Chertow GM, Go AS, Hsu CY. Increased prevalence of subclinical and clinical hypothyroidism in persons with chronic kidney disease. Kidney Int. 2005;67(3):1047–52.

    Article  PubMed  Google Scholar 

  3. Silverberg DS, Ulan RA, Fawcett DM, Dossetor JB, Grace M, Bettcher K. Effects of chronic hemodialysis on thyroid function in chronic renal failure. Can Med Assoc J. 1973;109(4):282–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Kang EW, Nam JY, Yoo TH, Shin SK, Kang SW, Han DS, et al. Clinical implications of subclinical hypothyroidism in continuous ambulatory peritoneal dialysis patients. Am J Nephrol. 2008;28(6):908–13.

    Article  CAS  PubMed  Google Scholar 

  5. McIver B, Gorman CA. Euthyroid sick syndrome: an overview. Thyroid. 1997;7(1):125–32.

    Article  CAS  PubMed  Google Scholar 

  6. Attia J, Margetts P, Guyatt G. Diagnosis of thyroid disease in hospitalized patients: a systematic review. Arch Intern Med. 1999;159(7):658–65.

    Article  CAS  PubMed  Google Scholar 

  7. De Groot LJ. Dangerous dogmas in medicine: the nonthyroidal illness syndrome. J Clin Endocrinol Metab. 1999;84(1):151–64.

    Article  PubMed  Google Scholar 

  8. Boelen A, Kwakkel J, Platvoet-ter Schiphorst M, Baur A, Köhrle J, Wiersinga WM. Contribution of interleukin-12 to the pathogenesis of non-thyroidal illness. Horm Metab Res. 2004;36(2):101–6.

    Article  CAS  PubMed  Google Scholar 

  9. Angelousi AG, Karageorgopoulos DE, Kapaskelis AM, Falagas ME. Association between thyroid function tests at baseline and the outcome of patients with sepsis or septic shock: a systematic review. Eur J Endocrinol. 2011;164(2):147–55.

    Article  CAS  PubMed  Google Scholar 

  10. Amato AA, Santos GM, Neves Fde A. Thyroid hormone action in chronic kidney disease. Curr Opin Endocrinol Diabetes Obes. 2008;15(5):459–65.

    Article  CAS  PubMed  Google Scholar 

  11. Mehta HJ, Joseph LJ, Desai KB, Mehta MN, Samuel AM, Almeida AF, et al. Total and free thyroid hormone levels in chronic renal failure. J Postgrad Med. 1991;37(2):79–83.

    CAS  PubMed  Google Scholar 

  12. Enia G, Panuccio V, Cutrupi S, Pizzini P, Tripepi G, Mallamaci F, et al. Subclinical hypothyroidism is linked to micro-inflammation and predicts death in continuous ambulatory peritoneal dialysis. Nephrol Dial Transpl. 2007;22(2):538–44.

    Article  Google Scholar 

  13. Zoccali C, Tripepi G, Cutrupi S, Pizzini P, Mallamaci F. Low triiodothyronine: a new facet of inflammation in end-stage renal disease. J Am Soc Nephrol. 2005;16:2789–95.

    Article  CAS  PubMed  Google Scholar 

  14. Rotondi M, Netti GS, Rosati A, Mazzinghi B, Magri F, Ronconi E, et al. Pretransplant serum FT3 levels in kidney graft recipients are useful for identifying patients with higher risk for graft failure. Clin Endocrinol (Oxf). 2008;68(2):220–5.

    CAS  Google Scholar 

  15. Pingitore A, Landi P, Taddei MC, Ripoli A, L’Abbate A, Iervasi G. Triiodothyronine levels for risk stratification of patients with chronic heart failure. Am J Med. 2005;118(2):132–6.

    Article  CAS  PubMed  Google Scholar 

  16. Frey A, Kroiss M, Berliner D, Seifert M, Allolio B, Güder G, et al. Prognostic impact of subclinical thyroid dysfunction in heart failure. Int J Cardiol. 2012;168(1):300–5.

    Article  PubMed  Google Scholar 

  17. Horáček J, Dusilová Sulková S, Kubišová M, Safránek R, Malířová E, et al. Thyroid hormone abnormalities in hemodialyzed patients: low triiodothyronine as well as high reverse triiodothyronine are associated with increased mortality. Physiol Res. 2012;61(5):495–501.

    PubMed  Google Scholar 

  18. Zoccali C, Mallamaci F, Tripepi G, Cutrupi S, Pizzini P. Low triiodothyronine and survival in end-stage renal disease. Kidney Int. 2006;70(3):523–8.

    Article  CAS  PubMed  Google Scholar 

  19. Jakobs TC, Schmutzler C, Meissner J, Köhrle J. The promoter of the human type I 5′-deiodinase gene––mapping of the transcription start site and identification of a DR+4 thyroid-hormone-responsive element. Eur J Biochem. 1997;247(1):288–97.

    Article  CAS  PubMed  Google Scholar 

  20. Burmeister LA, Pachucki J, St Germain DL. Thyroid hormones inhibit type 2 iodothyronine deiodinase in the rat cerebral cortex by both pre- and posttranslational mechanisms. Endocrinology. 1997;138(12):5231–7.

    CAS  PubMed  Google Scholar 

  21. Novitzky D, Cooper DK, Morrell D, Isaacs S. Change from aerobic to anaerobic metabolism after brain death, and reversal following triiodothyronine therapy. Transplantation. 1988;45(1):32–6.

    Article  CAS  PubMed  Google Scholar 

  22. Gereben B, Zeöld A, Dentice M, Salvatore D, Bianco AC. Activation and inactivation of thyroid hormone by deiodinases: local action with general consequences. Cell Mol Life Sci. 2008;65(4):570–90.

    Article  CAS  PubMed  Google Scholar 

  23. Coppola A, Liu ZW, Andrews ZB, Paradis E, Roy MC, Friedman JM, et al. A central thermogenic-like mechanism in feeding regulation: an interplay between arcuate nucleus T3 and UCP2. Cell Metab. 2007;5(1):21–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Boelen A, Kwakkel J, Wiersinga WM, Fliers E. Chronic local inflammation in mice results in decreased TRH and type 3 deiodinase mRNA expression in the hypothalamic paraventricular nucleus independently of diminished food intake. J Endocrinol. 2006;191(3):707–14.

    Article  CAS  PubMed  Google Scholar 

  25. Zeöld A, Doleschall M, Haffner MC, Capelo LP, Menyhért J, Liposits Z, et al. Characterization of the nuclear factor-κB responsiveness of the human dio2 gene. Endocrinology. 2006;147(9):4419–29.

    Article  PubMed  Google Scholar 

  26. Farwell AP. Nonthyroidal illness syndrome. Curr Opin Endocrinol Diabetes Obes. 2013;20(5):478–84.

    Article  CAS  PubMed  Google Scholar 

  27. Crowley WF Jr, Ridgway EC, Bough EW, Francis GS, Daniels GH, Kourides IA, et al. Noninvasive evaluation of cardiac function in hypothyroidism. Response to gradual thyroxine replacement. N Engl J Med. 1977;296(1):1–6.

    Article  PubMed  Google Scholar 

  28. Klein I, Ojamaa K. Thyroid hormone and the cardiovascular system. N Engl J Med. 2001;344(7):501–9.

    Article  CAS  PubMed  Google Scholar 

  29. Schmid C, Brändle M, Zwimpfer C, Zapf J, Wiesli P. Effect of thyroxine replacement on creatinine, insulin-like growth factor 1, acid-labile subunit, and vascular endothelial growth factor. Clin Chem. 2004;50(1):228–31.

    Article  CAS  PubMed  Google Scholar 

  30. Diekman MJ, Harms MP, Endert E, Wieling W, Wiersinga WM. Endocrine factors related to changes in total peripheral vascular resistance after treatment of thyrotoxic and hypothyroid patients. Eur J Endocrinol. 2001;144(4):339–46.

    Article  CAS  PubMed  Google Scholar 

  31. Singer MA. Of mice and men and elephants: metabolic rate sets glomerular filtration rate. Am J Kidney Dis. 2001;37(1):164–78.

    Article  CAS  PubMed  Google Scholar 

  32. Napoli R, Guardasole V, Angelini V, Zarra E, Terracciano D, D’Anna C, et al. Acute effects of triiodothyronine on endothelial function in human subjects. J Clin Endocrinol Metab. 2007;92(1):250–4.

    Article  CAS  PubMed  Google Scholar 

  33. Bradley SE, Coelho JB, Sealey JE, Edwards KD, Stéphan F. Changes in glomerulotubular dimensions, single nephron glomerular filtration rates and the renin-angiotensin system in hypothyroid rats. Life Sci. 1982;30(7–8):633–9.

    Article  CAS  PubMed  Google Scholar 

  34. Feinstein EI, Kaptein EM, Nicoloff JT, Massry SG. Thyroid function in patients with nephrotic syndrome and normal renal function. Am J Nephrol. 1982;2(2):70–6.

    Article  CAS  PubMed  Google Scholar 

  35. Ramirez G, O’Neill W Jr, Jubiz W, Bloomer HA. Thyroid dysfunction in uremia: evidence for thyroid and hypophyseal abnormalities. Ann Intern Med. 1976;84:672–6.

    Article  CAS  PubMed  Google Scholar 

  36. Zeraati AA, Layegh P, Famili Y, Naghibi M, Sharifipour F, Shariati Sarabi Z. Serum triiodothyronine level as an indicator of inflammation in patients undergoing dialysis. Iran J Kidney Dis. 2011;5(1):38–44.

    PubMed  Google Scholar 

  37. Basu G, Mohapatra A. Interactions between thyroid disorders and kidney disease. Indian J Endocrinol Metab. 2012;16(2):204–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Bando Y, Ushiogi Y, Okafuji K, Toya D, Tanaka N, Miura S. Non-autoimmune primary hypothyroidism in diabetic and non-diabetic chronic renal dysfunction. Exp Clin Endocrinol Diabetes. 2002;110:408–15.

    Article  CAS  PubMed  Google Scholar 

  39. Boelen A, Maas MA, Lowik CW, Platvoet MC, Wiersinga WM. Induced illness in interleukin-6 (IL-6) knock-out mice: a causal role of IL-6 in the development of the low 3,5,3′-triiodothyronine syndrome. Endocrinology. 1996;137(12):5250–4.

    CAS  PubMed  Google Scholar 

  40. Torpy DJ, Tsigos C, Lotsikas AJ, Defensor R, Chrousos GP, Papanicolaou DA. Acute and delayed effects of a single-dose injection of interleukin-6 on thyroid function in healthy humans. Metabolism. 1998;47(10):1289–93.

    Article  CAS  PubMed  Google Scholar 

  41. Bartalena L, Brogioni S, Grasso L, Velluzzi F, Martino E. Relationship of the increased serum interleukin-6 concentration to changes of thyroid function in nonthyroidal illness. J Endocrinol Invest. 1994;17(4):269–74.

    Article  CAS  PubMed  Google Scholar 

  42. Yu J, Koenig RJ. Induction of type 1 iodothyronine deiodinase to prevent the nonthyroidal illness syndrome in mice. Endocrinology. 2006;147(7):3580–5.

    Article  CAS  PubMed  Google Scholar 

  43. Boelen A. Platvoet-Ter Schiphorst MC, Wiersinga WM. Soluble cytokine receptors and the low 3,5,3′-triiodothyronine syndrome in patients with nonthyroidal disease. J Clin Endocrinol Metab. 1995;80(3):971–6.

    CAS  PubMed  Google Scholar 

  44. Boelen A, Platvoet-Ter Schiphorst MC, Wiersinga WM. Association between serum interleukin-6 and serum 3,5,3′-triiodothyronine in nonthyroidal illness. J Clin Endocrinol Metab. 1993;77(6):1695–9.

    CAS  PubMed  Google Scholar 

  45. Rasmussen AK, Feldt-Rasmussen U, Bendtzen K. The effect of interleukin-1 on the thyroid gland. Autoimmunity. 1993;16(2):141–8.

    Article  CAS  PubMed  Google Scholar 

  46. Hamilton TA, Ohmori Y, Tebo JM, Kishore R. Regulation of macrophage gene expression by pro- and anti-inflammatory cytokines. Pathobiology. 1999;67(5–6):241–4.

    Article  CAS  PubMed  Google Scholar 

  47. van der Poll T, Romijn JA, Wiersinga WM, Sauerwein HP. Tumor necrosis factor: a putative mediator of the sick euthyroid syndrome in man. J Clin Endocrinol Metab. 1990;71(6):1567–72.

    Article  PubMed  Google Scholar 

  48. Stouthard JM, van der Poll T, Endert E, Bakker PJ, Veenhof CH, Sauerwein HP, et al. Effects of acute and chronic interleukin-6 administration on thyroid hormone metabolism in humans. J Clin Endocrinol Metab. 1994;79(5):1342–6.

    CAS  PubMed  Google Scholar 

  49. Tang KT, Braverman LE, DeVito WJ. Tumor necrosis factor-alpha and interferon-gamma modulate gene expression of type I 5′-deiodinase, thyroid peroxidase, and thyroglobulin in FRTL-5 rat thyroid cells. Endocrinology. 1995;136(3):881–8.

    CAS  PubMed  Google Scholar 

  50. Boelen A, Platvoet-ter Schiphorst MC, Bakker O, Wiersinga WM. The role of cytokines in the lipopolysaccharide-induced sick euthyroid syndrome in mice. J Endocrinol. 1995;146(3):475–83.

    Article  CAS  PubMed  Google Scholar 

  51. Hermus RM, Sweep CG, van der Meer MJ, Ross HA, Smals AG, Benraad TJ, et al. Continuous infusion of interleukin-1 beta induces a nonthyroidal illness syndrome in the rat. Endocrinology. 1992;131(5):2139–46.

    CAS  PubMed  Google Scholar 

  52. Boelen A, Platvoet-ter Schiphorst MC, Wiersinga WM. Immunoneutralization of interleukin-1, tumor necrosis factor, interleukin-6 or interferon does not prevent the LPS-induced sick euthyroid syndrome in mice. J Endocrinol. 1997;153(1):115–22.

    Article  CAS  PubMed  Google Scholar 

  53. Abilés J, de la Cruz AP, Castaño J, Rodríguez-Elvira M, Aguayo E, Moreno-Torres R, et al. Oxidative stress is increased in critically ill patients according to antioxidant vitamins intake, independent of severity: a cohort study. Crit Care. 2006;10(5):R146.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Wajner SM, Goemann IM, Bueno AL, Larsen PR, Maia AL. IL-6 promotes nonthyroidal illness syndrome by blocking thyroxine activation while promoting thyroid hormone inactivation in human cells. J Clin Invest. 2011;121(5):1834–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Menzies KJ, Robinson BH, Hood DA. Effect of thyroid hormone on mitochondrial properties and oxidative stress in cells from patients with mtDNA defects. Am J Physiol Cell Physiol. 2009;296(2):C355–62.

    Article  CAS  PubMed  Google Scholar 

  56. Henderson KK, Danzi S, Paul JT, Leya G, Klein I, Samarel AM. Physiological replacement of T3 improves left ventricular function in an animal model of myocardial infarction-induced congestive heart failure. Circ Heart Fail. 2009;2(3):243–52.

    Article  PubMed  Google Scholar 

  57. Forini F, Lionetti V, Ardehali H, Pucci A, Cecchetti F, Ghanefar M, et al. Early long-term L-T3 replacement rescues mitochondria and prevents ischemic cardiac remodelling in rats. J Cell Mol Med. 2011;15(3):514–24.

    Article  CAS  PubMed  Google Scholar 

  58. Klemperer JD, Klein I, Gomez M, Helm RE, Ojamaa K, Thomas SJ, et al. Thyroid hormone treatment after coronary–artery bypass surgery. N Engl J Med. 1995;333(23):1522–7.

    Article  CAS  PubMed  Google Scholar 

  59. Pingitore A, Galli E, Barison A, Iervasi A, Scarlattini M, Nucci D, et al. Acute effects of triiodothyronine (T3) replacement therapy in patients with chronic heart failure and low-T3 syndrome: a randomized, placebo-controlled study. J Clin Endocrinol Metab. 2008;93(4):1351–8.

    Article  CAS  PubMed  Google Scholar 

  60. Farwell AP. Thyroid hormone therapy is not indicated in the majority of patients with the sick euthyroid syndrome. Endocr Pract. 2008;14(9):1180–7.

    Article  PubMed  Google Scholar 

  61. Brent GA, Hershman JM. Thyroxine therapy in patients with severe nonthyroidal illnesses and low serum thyroxine concentration. J Clin Endocrinol Metab. 1986;63(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  62. Becker RA, Vaughan GM, Ziegler MG, Seraile LG, Goldfarb IW, Mansour EH, et al. Hypermetabolic low triiodothyronine syndrome of burn injury. Crit Care Med. 1982;10(12):870–5.

    Article  CAS  PubMed  Google Scholar 

  63. Langouche L, Vander Perre S, Marques M, Boelen A, Wouters PJ, Casaer MP, et al. Impact of early nutrient restriction during critical illness on the nonthyroidal illness syndrome and its relation with outcome: a randomized, controlled clinical study. J Clin Endocrinol Metab. 2013;98(3):1006–13.

    Article  CAS  PubMed  Google Scholar 

  64. Plikat K, Langgartner J, Buettner R, Bollheimer LC, Woenckhaus U, Schölmerich J, et al. Frequency and outcome of patients with nonthyroidal illness syndrome in a medical intensive care unit. Metabolism. 2007;56(2):239–44.

    Article  CAS  PubMed  Google Scholar 

  65. Kaptein EM, Beale E, Chan LS. Thyroid hormone therapy for obesity and nonthyroidal illnesses: a systematic review. J Clin Endocrinol Metab. 2009;94(10):3663–75.

    Article  CAS  PubMed  Google Scholar 

  66. Debaveye Y, Ellger B, Mebis L, Visser TJ, Darras VM, Van den Berghe G. Effects of substitution and high-dose thyroid hormone therapy on deiodination, sulfoconjugation, and tissue thyroid hormone levels in prolonged critically ill rabbits. Endocrinology. 2008;149(8):4218–28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Lim VS, Tsalikian E, Flanigan MJ. Augmentation of protein degradation by l-triiodothyronine in uremia. Metabolism. 1989;38(12):1210–5.

    Article  CAS  PubMed  Google Scholar 

  68. Pappa TA, Vagenakis AG, Alevizaki M. The nonthyroidal illness syndrome in the non-critically ill patient. Eur J Clin Invest. 2011;41(2):212–20.

    Article  CAS  PubMed  Google Scholar 

  69. Villicev CM, Freitas FR, Aoki MS, Taffarel C, Scanlan TS, Moriscot AS, et al. Thyroid hormone receptor beta-specific agonist GC-1 increases energy expenditure and prevents fat-mass accumulation in rats. J Endocrinol. 2007;193(1):21–9.

    Article  CAS  PubMed  Google Scholar 

  70. van den Berghe G, Wouters P, Weekers F, Mohan S, Baxter RC, Veldhuis JD, et al. Reactivation of pituitary hormone release and metabolic improvement by infusion of growth hormone-releasing peptide and thyrotropin-releasing hormone in patients with protracted critical illness. J Clin Endocrinol Metab. 1999;84(4):1311–23.

    PubMed  Google Scholar 

  71. Debaveye Y, Ellger B, Mebis L, Van Herck E, Coopmans W, Darras V, et al. Tissue deiodinase activity during prolonged critical illness: effects of exogenous thyrotropin-releasing hormone and its combination with growth hormone-releasing peptide-2. Endocrinology. 2005;146(12):5604–11.

    Article  CAS  PubMed  Google Scholar 

  72. de Brito-Ashurst I, Varagunam M, Raftery MJ, Yaqoob MM. Bicarbonate supplementation slows progression of CKD and improves nutritional status. J Am Soc Nephrol. 2009;20(9):2075–84.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Mahajan A, Simoni J, Sheather SJ, Broglio KR, Rajab MH, Wesson DE. Daily oral sodium bicarbonate preserves glomerular filtration rate by slowing its decline in early hypertensive nephropathy. Kidney Int. 2010;78(3):303–9.

    Article  CAS  PubMed  Google Scholar 

  74. Disthabanchong S, Treeruttanawanich A. Oral sodium bicarbonate improves thyroid function in predialysis chronic kidney disease. Am J Nephrol. 2010;32(6):549–56.

    Article  CAS  PubMed  Google Scholar 

  75. Brüngger M, Hulter HN, Krapf R. Effect of chronic metabolic acidosis on thyroid hormone homeostasis in humans. Am J Physiol. 1997;272:F648–53.

    PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported by the National Natural Science Foundation of China (No. 81360122/H0518). No conflict of interests is declared.

Conflict of interest

The paper is not under consideration elsewhere.

None of the paper’s contents has been previously published.

All the authors have read and approved the manuscript.

There was not any potential conflict of interest in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaosi Xu.

Additional information

W. Yan and J. Li have contributed equally to this work.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Yan, W. & Li, J. An update for the controversies and hypotheses of regulating nonthyroidal illness syndrome in chronic kidney diseases. Clin Exp Nephrol 18, 837–843 (2014). https://doi.org/10.1007/s10157-014-0974-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-014-0974-1

Keywords

Navigation