Skip to main content
Log in

Interplay of flagellar motility and mucin degradation stimulates the association of Pseudomonas aeruginosa with human epithelial colorectal adenocarcinoma (Caco-2) cells

  • Original Article
  • Published:
Journal of Infection and Chemotherapy

Abstract

Pseudomonas aeruginosa can penetrate the extracellular mucin barrier formed by the intestinal epithelial cell layer and establish gut-derived sepsis in immunocompromised patients. We found that two efficient mechanisms, flagellar motility and mucin degradation, are needed for penetration of P. aeruginosa through the mucin barrier. Deletion of the flagellar motility-related gene, the filament protein gene fliC, the cap protein gene fliD, and the motor complex protein genes motABCD from P. aeruginosa PAO1 decreased association of P. aeruginosa with the apical surface of human epithelial colorectal adenocarcinoma (Caco-2) cells. A penetration experiment using an artificial mucin layer suggested that the decreased penetration is caused by attenuation of mucin penetration ability. Additionally, the presence of P. aeruginosa decreased the total mucin, including the secreted mucin protein MUC2, on the surface of the Caco-2 cell monolayer, regardless of flagellar motility. Construction of the PAO1 mutant series knocked out 12 putative serine protease genes and identified the mucD gene, which participated in degradation of total mucin, including MUC2. Furthermore, decreased association with the surface of the Caco-2 cell monolayer was observed in the mucD mutant, and the decrease was synergistically amplified by double knockout with fliC. We conclude that P. aeruginosa can penetrate the mucin layer using flagellar motility and mucin degradation, which is dependent on the MucD protease or the mucD gene-related protease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vincent JL, Rello J, Marshall J, Silva E, Anzueto A, Martin CD, et al. International study of the prevalence and outcomes of infection in intensive care units. JAMA. 2009;302:2323–9.

    Article  PubMed  CAS  Google Scholar 

  2. Shimizu K, Ogura H, Goto M, Asahara T, Nomoto K, Morotomi M, et al. Altered gut flora and environment in patients with severe SIRS. J Trauma. 2006;60:126–33.

    Article  PubMed  Google Scholar 

  3. Tancrede CH, Andremont AO. Bacterial translocation and gram-negative bacteremia in patients with hematological malignancies. J Infect Dis. 1985;152:99–103.

    Article  PubMed  CAS  Google Scholar 

  4. Bertrand X, Thouverez M, Talon D, Boillot A, Capellier G, Floriot C, et al. Endemicity, molecular diversity and colonisation routes of Pseudomonas aeruginosa in intensive care units. Intensive Care Med. 2001;27:1263–8.

    Article  PubMed  CAS  Google Scholar 

  5. Marshall JC, Christou NV, Meakins JL. The gastrointestinal tract. The “undrained abscess” of multiple organ failure. Ann Surg. 1993;218:111–9.

    Article  PubMed  CAS  Google Scholar 

  6. Koh AY, Mikkelsen PJ, Smith RS, Coggshall KT, Kamei A, Givskov M, et al. Utility of in vivo transcription profiling for identifying Pseudomonas aeruginosa genes needed for gastrointestinal colonization and dissemination. PLoS ONE. 2010;5:e15131.

    Article  PubMed  Google Scholar 

  7. Dharmani P, Srivastava V, Kissoon-Singh V, Chadee K. Role of intestinal mucins in innate host defense mechanisms against pathogens. J Innate Immun. 2009;1:123–35.

    Article  PubMed  CAS  Google Scholar 

  8. McGuckin MA, Lindén SK, Sutton P, Florin TH. Mucin dynamics and enteric pathogens. Nat Rev Microbiol. 2011;9:265–78.

    Article  PubMed  CAS  Google Scholar 

  9. Tlaskalová-Hogenová H, Stěpánková R, Kozáková H, Hudcovic T, Vannucci L, Tučková L, et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol. 2011;8:110–20.

    Article  PubMed  Google Scholar 

  10. Hirakata Y, Izumikawa K, Yamaguchi T, Igimi S, Furuya N, Maesaki S, et al. Adherence to and penetration of human intestinal Caco-2 epithelial cell monolayers by Pseudomonas aeruginosa. Infect Immun. 1998;66:1748–51.

    PubMed  CAS  Google Scholar 

  11. Hirakata Y, Finlay BB, Simpson DA, Kohno S, Kamihira S, Speert DP. Penetration of clinical isolates of Pseudomonas aeruginosa through MDCK epithelial cell monolayers. J Infect Dis. 2000;181:765–9.

    Article  PubMed  CAS  Google Scholar 

  12. Conrad JC, Gibiansky ML, Jin F, Gordon VD, Motto DA, Mathewson MA, et al. Flagella and pili-mediated near-surface single-cell motility mechanisms in P. aeruginosa. Biophys J. 2011;100:1608–16.

    Article  PubMed  CAS  Google Scholar 

  13. Okuda J, Hayashi H, Okamoto M, Sawada S, Minagawa S, Yano Y, et al. Translocation of Pseudomonas aeruginosa from the intestinal tract is mediated by the binding of ExoS to an Na,K-ATPase regulator, FXYD3. Infect Immun. 2010;78:4511–22.

    Article  PubMed  CAS  Google Scholar 

  14. Herrmann A, Davies JR, Lindell G, Mårtensson S, Packer NH, Swallow DM, et al. Studies on the “insoluble” glycoprotein complex from human colon. Identification of reduction-insensitive MUC2 oligomers and C-terminal cleavage. J Biol Chem. 1999;274:15828–36.

    Article  PubMed  CAS  Google Scholar 

  15. Johansson ME, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci USA. 2008;105:15064–9.

    Article  PubMed  CAS  Google Scholar 

  16. Göttke MU, Keller K, Belley A, Garcia RM, Hollingsworth MA, Mack DR, et al. Functional heterogeneity of colonic adenocarcinoma mucins for inhibition of Entamoeba histolytica adherence to target cells. J Eukaryot Microbiol. 1998;45:17S–23S.

    Article  PubMed  Google Scholar 

  17. Mattar AF, Teitelbaum DH, Drongowski RA, Yongyi F, Harmon CM, Coran AG. Probiotics up-regulate MUC-2 mucin gene expression in a Caco-2 cell-culture model. Pediatr Surg Int. 2002;18:586–90.

    Article  PubMed  CAS  Google Scholar 

  18. Silva AJ, Pham K, Benitez JA. Haemagglutinin/protease expression and mucin gel penetration in El Tor biotype Vibrio cholerae. Microbiology. 2003;149:1883–91.

    Article  PubMed  CAS  Google Scholar 

  19. Sheikh J, Czeczulin JR, Harrington S, Hicks S, Henderson IR, Le Bouguénec C, et al. A novel dispersin protein in enteroaggregative Escherichia coli. J Clin Invest. 2002;110:1329–37.

    PubMed  CAS  Google Scholar 

  20. Aristoteli LP, Willcox MD. Mucin degradation mechanisms by distinct Pseudomonas aeruginosa isolates in vitro. Infect Immun. 2003;71:5565–75.

    Article  PubMed  CAS  Google Scholar 

  21. Henke MO, John G, Rheineck C, Chillappagari S, Naehrlich L, Rubin BK. Serine proteases degrade airway mucins in cystic fibrosis. Infect Immun. 2011;79:3438–44.

    Article  PubMed  CAS  Google Scholar 

  22. Rashid MH, Kornberg A. Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc Natl Acad Sci USA. 2000;97:4885–90.

    Article  PubMed  CAS  Google Scholar 

  23. Toutain CM, Zegans ME, O’Toole GA. Evidence for two flagellar stators and their role in the motility of Pseudomonas aeruginosa. J Bacteriol. 2005;187:771–7.

    Article  PubMed  CAS  Google Scholar 

  24. Doyle TB, Hawkins AC, McCarter LL. The complex flagellar torque generator of Pseudomonas aeruginosa. J Bacteriol. 2004;186:6341–50.

    Article  PubMed  CAS  Google Scholar 

  25. Hatano K, Matsumoto T, Furuya N, Hirakata Y, Tateda K. Role of motility in the endogenous Pseudomonas aeruginosa sepsis after burn. J Infect Chemother. 1996;2:240–6.

    Article  Google Scholar 

  26. Fleiszig SM, Arora SK, Van R, Ramphal R. FlhA, a component of the flagellum assembly apparatus of Pseudomonas aeruginosa, plays a role in internalization by corneal epithelial cells. Infect Immun. 2001;69:4931–7.

    Article  PubMed  CAS  Google Scholar 

  27. Bucior I, Pielage JF, Engel JN. Pseudomonas aeruginosa pili and flagella mediate distinct binding and signaling events at the apical and basolateral surface of airway epithelium. PLoS Pathog. 2012;8:e1002616.

    Article  PubMed  CAS  Google Scholar 

  28. Liu Z, Miyashiro T, Tsou A, Hsiao A, Goulian M, Zhu J. Mucosal penetration primes Vibrio cholerae for host colonization by repressing quorum sensing. Proc Natl Acad Sci USA. 2008;105:9769–74.

    Article  PubMed  CAS  Google Scholar 

  29. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature (Lond). 2000;406:959–64.

    Article  CAS  Google Scholar 

  30. Okuda J, Hayashi N, Tanabe S, Minagawa S, Gotoh N. Degradation of interleukin 8 by the serine protease MucD of Pseudomonas aeruginosa. J Infect Chemother. 2011;17:782–92.

    Article  PubMed  CAS  Google Scholar 

  31. Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene (Amst). 1994;145:69–73.

    Article  Google Scholar 

  32. Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP. A broad-host-range Flp–FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene (Amst). 1998;212:77–86.

    Article  CAS  Google Scholar 

  33. Kuwayama H, Obara S, Morio T, Katoh M, Urushihara H, Tanaka Y. PCR mediated generation of a gene disruption construct without the use of DNA ligase and plasmid vectors. Nucleic Acids Res. 2002;30:E2.

    Article  PubMed  Google Scholar 

  34. Heeb S, Itoh Y, Nishiyo T, Schnider U, Keel C, Wade J, et al. Small, stable shuttle vectors based on the minimal pVS1 replicon for use in gram-negative, plant-associated bacteria. Mol Plant-Microbe Interact. 1996;13:232–7.

    Article  Google Scholar 

  35. Hirakata Y, Srikumar R, Poole K, Gotoh N, Suematsu T, Kohno S, et al. Multidrug efflux systems play an important role in the invasiveness of Pseudomonas aeruginosa. J Exp Med. 2002;196:109–18.

    Article  PubMed  CAS  Google Scholar 

  36. Hilgendorf C, Spahn-Langguth H, Regårdh CG, Lipka E, Amidon GL, Langguth P. Caco-2 versus Caco-2/HT29-MTX co-cultured cell lines: permeabilities via diffusion, inside- and outside-directed carrier-mediated transport. J Pharm Sci. 2000;89:63–75.

    Article  PubMed  CAS  Google Scholar 

  37. Song S, Byrd JC, Koo JS, Bresalier RS. Bile acids induce MUC2 overexpression in human colon carcinoma cells. Cancer (Phila). 2005;103:1606–14.

    Article  CAS  Google Scholar 

  38. Sambrook J, Fritsch EF, Maniatis TA. Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989.

    Google Scholar 

  39. Simon R, Priefer U, Plihler A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram-negative bacteria. Biotechnology. 1983;1:784–94.

    Article  CAS  Google Scholar 

  40. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, et al. The Pfam protein families database. Nucleic Acids Res. 2012;40:D290–301.

    Article  PubMed  CAS  Google Scholar 

  41. Damron FH, Goldberg JB. Proteolytic regulation of alginate overproduction in Pseudomonas aeruginosa. Mol Microbiol. 2012;84:595–607.

    Article  PubMed  CAS  Google Scholar 

  42. Boucher JC, Martinez-Salazar J, Schurr MJ, Mudd MH, Yu H, Deretic V. Two distinct loci affecting conversion to mucoidy in Pseudomonas aeruginosa in cystic fibrosis encode homologs of the serine protease HtrA. J Bacteriol. 1996;178:511–23.

    PubMed  CAS  Google Scholar 

  43. Boucher JC, Yu H, Mudd MH, Deretic V. Mucoid Pseudomonas aeruginosa in cystic fibrosis: characterization of muc mutations in clinical isolates and analysis of clearance in a mouse model of respiratory infection. Infect Immun. 1997;65:3838–46.

    PubMed  CAS  Google Scholar 

  44. Firoved AM, Boucher JC, Deretic V. Global genomic analysis of AlgU (σE)-dependent promoters (sigmulon) in Pseudomonas aeruginosa and implications for inflammatory processes in cystic fibrosis. J Bacteriol. 2002;184:1057–64.

    Article  PubMed  CAS  Google Scholar 

  45. Mathee K, McPherson CJ, Ohman DE. Posttranslational control of the algT (algU)-encoded σ22 for expression of the alginate regulon in Pseudomonas aeruginosa and localization of its antagonist proteins MucA and MucB (AlgN). J Bacteriol. 1997;179:3711–20.

    PubMed  CAS  Google Scholar 

  46. Murray TS, Kazmierczak BI. Pseudomonas aeruginosa exhibits sliding motility in the absence of type IV pili and flagella. J Bacteriol. 2007;190:2700–8.

    Article  PubMed  Google Scholar 

  47. Imperi F, Ciccosanti F, Perdomo AB, Tiburzi F, Mancone C, Alonzi T, et al. Analysis of the periplasmic proteome of Pseudomonas aeruginosa, a metabolically versatile opportunistic pathogen. Proteomics. 2009;9:1901–15.

    Article  PubMed  CAS  Google Scholar 

  48. Silva AJ, Pham K, Benitez JA. Haemagglutinin/protease expression and mucin gel penetration in El Tor biotype Vibrio cholerae. Microbiology. 2003;149:883–91.

    Article  Google Scholar 

  49. Szabady RL, Yanta JH, Halladin DK, Schofield MJ, Welch RA. TagA is a secreted protease of Vibrio cholerae that specifically cleaves mucin glycoproteins. Microbiology. 2010;157:516–25.

    Article  PubMed  Google Scholar 

  50. Henderson IR, Czeczulin J, Eslava C, Noriega F, Nataro JP. Characterization of Pic, a secreted protease of Shigella flexneri and enteroaggregative Escherichia coli. Infect Immun. 1999;67:5587–96.

    PubMed  CAS  Google Scholar 

  51. Grys TE, Siegel MB, Lathem WW, Welch RA. The StcE protease contributes to intimate adherence of enterohemorrhagic Escherichia coli O157:H7 to host cells. Infect Immun. 2005;73:1295–303.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a Grant-in-Aid for Scientific Research (C) from the Japan Society for the Promotion of Science (JSPS), and a Grant from the “Academic Frontier” Project for Private Universities from the Japanese Ministry of Education, Culture, Sport, Science and Technology (MEXT) to N.G. N.H. was the recipient of a scholarship from The Japan Scholarship Foundation.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naomasa Gotoh.

About this article

Cite this article

Hayashi, N., Matsukawa, M., Horinishi, Y. et al. Interplay of flagellar motility and mucin degradation stimulates the association of Pseudomonas aeruginosa with human epithelial colorectal adenocarcinoma (Caco-2) cells. J Infect Chemother 19, 305–315 (2013). https://doi.org/10.1007/s10156-013-0554-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10156-013-0554-4

Keywords

Navigation