Skip to main content

Advertisement

Log in

Performance of p16INK4a/Ki-67 immunocytochemistry for identifying CIN2+ in atypical squamous cells of undetermined significance and low-grade squamous intraepithelial lesion specimens: a Japanese Gynecologic Oncology Group study

  • Original Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

p16INK4a immunohistochemistry has revealed a high rate of positivity in cervical intraepithelial neoplasia grade 2 (CIN2) and more severe conditions (CIN2+). The Lower Anogenital Squamous Terminology Standardization project proposed p16INK4a immunohistochemistry as an ancillary test for CIN. Immunocytochemistry involving dual staining for p16INK4a and Ki-67 in the triage of atypical squamous cells of undetermined significance (ASCUS) and low-grade squamous intraepithelial lesions (LSIL) is reported to be useful in the identification of CIN2+. However, it is unclear whether p16INK4a/Ki-67 immunocytochemistry is of practical relevance for the triage of ASCUS and LSIL in the Japanese screening system.

Methods

From 427 women fulfilling the eligibility criteria, 188 ASCUS and 239 LSIL specimens were analyzed. The accuracy of p16INK4a/Ki-67 immunocytochemistry and genotyping of high-risk human papillomaviruses (HPVs) in detecting CIN2+ were compared.

Results

p16INK4a/Ki-67 immunocytochemistry was positive in 33.5 % (63/188) of ASCUS, and 36.8 % (88/239) of LSIL specimens. The sensitivity and specificity of p16INK4a/Ki-67 immunocytochemistry was 87.3 % (95 % confidence interval 78.0–93.8 %) and 76.4 % (71.6–80.8 %), respectively. The positive and negative predictive values were 45.7 % (37.6–54.0 %) and 96.4 % (93.4–98.3 %), respectively; positive and negative likelihood ratios were 3.71 and 0.17, respectively. Using the McNemar test, p16INK4a/Ki-67 immunocytochemistry showed equivalent sensitivity but higher specificity than the HPV genotyping test

Conclusions

Compared with high-risk HPV genotyping, p16INK4a/Ki-67 immunocytochemistry was a more accurate triage test for identifying CIN2+ in ASCUS and LSIL specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Parkin DM, Bray F (2006) Chapter 2: The burden of HPV-related cancers. Vaccine 24((Suppl 3)):S11–S25

    Article  Google Scholar 

  2. Walboomers JM, Jacobs MV, Manos MM et al (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189(1):12–19

    Article  CAS  PubMed  Google Scholar 

  3. zur Hausen H (1991) Viruses in human cancers. Science 254(5035):1167–1173

    Article  CAS  PubMed  Google Scholar 

  4. Nishio S, Fujii T, Nishio H et al (2013) p16(INK4a) immunohistochemistry is a promising biomarker to predict the outcome of low grade cervical intraepithelial neoplasia: comparison study with HPV genotyping. J Gynecol Oncol 24(3):215–221. doi:10.3802/jgo.2013.24.3.215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Ishikawa M, Fujii T, Masumoto N et al (2003) Correlation of p16INK4a overexpression with human papillomavirus infection in cervical adenocarcinomas. Int J Gynecol Pathol 22(4):378–385

    Article  PubMed  Google Scholar 

  6. Darragh TM, Colgan TJ, Cox JT et al (2012) The Lower Anogenital Squamous Terminology Standardization Project for HPV-Associated Lesions: background and consensus recommendations from the College of American Pathologists and the American Society for Colposcopy and Cervical Pathology. J Low Genit Tract Dis 16(3):205–242. doi:10.1097/LGT.0b013e31825c31dd

    Article  PubMed  Google Scholar 

  7. Fujii T, Saito M, Iwata T et al (2008) Ancillary testing of liquid-based cytology specimens for identification of patients at high risk of cervical cancer. Virchows Arch 453(6):545–555. doi:10.1007/s00428-008-0687-5

    Article  CAS  PubMed  Google Scholar 

  8. Denton KJ, Bergeron C, Klement P et al (2010) The sensitivity and specificity of p16(INK4a) cytology vs HPV testing for detecting high-grade cervical disease in the triage of ASC-US and LSIL pap cytology results. Am J Clin Pathol 134(1):12–21. doi:10.1309/AJCP3CD9YKYFJDQL

    Article  PubMed  Google Scholar 

  9. Monsonego J, Pollini G, Evrard MJ et al (2007) P16(INK4a) immunocytochemistry in liquid-based cytology samples in equivocal Pap smears: added value in management of women with equivocal Pap smear. Acta Cytol 51(5):755–766

    Article  PubMed  Google Scholar 

  10. Dona MG, Vocaturo A, Giuliani M et al (2012) p16/Ki-67 dual staining in cervico-vaginal cytology: correlation with histology, Human Papillomavirus detection and genotyping in women undergoing colposcopy. Gynecol Oncol 126(2):198–202. doi:10.1016/j.ygyno.2012.05.004

    Article  PubMed  Google Scholar 

  11. Bethesda 2001 system for cervical cytology (in Japanese) (2012). http://www.jaog.or.jp/sep2012/JAPANESE/jigyo/CANCER/Bethesda_0811.pdf

  12. Schmidt D, Bergeron C, Denton KJ et al (2011) p16/ki-67 dual-stain cytology in the triage of ASCUS and LSIL papanicolaou cytology: results from the European equivocal or mildly abnormal Papanicolaou cytology study. Cancer Cytopathol 119(3):158–166. doi:10.1002/cncy.20140

    Article  PubMed  Google Scholar 

  13. Solomon D, Davey D, Kurman R et al (2002) The 2001 Bethesda System: terminology for reporting results of cervical cytology. JAMA 287(16):2114–2119

    Article  PubMed  Google Scholar 

  14. Petry KU, Schmidt D, Scherbring S et al (2011) Triaging Pap cytology negative, HPV positive cervical cancer screening results with p16/Ki-67 Dual-stained cytology. Gynecol Oncol 121(3):505–509. doi:10.1016/j.ygyno.2011.02.033

    Article  PubMed  Google Scholar 

  15. Wentzensen N, Schwartz L, Zuna RE et al (2012) Performance of p16/Ki-67 immunostaining to detect cervical cancer precursors in a colposcopy referral population. Clin Cancer Res 18(15):4154–4162. doi:10.1158/1078-0432.CCR-12-0270

    Article  PubMed Central  PubMed  Google Scholar 

  16. Munoz N, Bosch FX, de Sanjose S et al (2003) Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 348(6):518–527. doi:10.1056/NEJMoa021641348/6/518

    Article  PubMed  Google Scholar 

  17. Matsumoto K, Oki A, Furuta R et al (2011) Predicting the progression of cervical precursor lesions by human papillomavirus genotyping: a prospective cohort study. Int J Cancer 128(12):2898–2910. doi:10.1002/ijc.25630

    Article  CAS  PubMed  Google Scholar 

  18. Ikenberg H, Bergeron C, Schmidt D et al (2013) Screening for cervical cancer precursors with p16/Ki-67 dual-stained cytology: results of the PALMS study. J Natl Cancer Inst 105(20):1550–1557. doi:10.1093/jnci/djt235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Bethesda system website atlas. http://nih.cytopathology.org/atlas.php

  20. Cervical cancer. http://www.cancer.net/cancer-types/cervical-cancer/prevention

  21. Ronco G, Giorgi-Rossi P, Carozzi F et al (2010) Efficacy of human papillomavirus testing for the detection of invasive cervical cancers and cervical intraepithelial neoplasia: a randomised controlled trial. Lancet Oncol 11(3):249–257. doi:10.1016/S1470-2045(09)70360-2

    Article  CAS  PubMed  Google Scholar 

  22. Ronco G, Ghisetti V, Segnan N et al (2005) Prevalence of human papillomavirus infection in women in Turin, Italy. Eur J Cancer 41(2):297–305. doi:10.1016/j.ejca.2004.07.005

    Article  PubMed  Google Scholar 

  23. Ronco G, Segnan N, Giorgi-Rossi P et al (2006) Human papillomavirus testing and liquid-based cytology: results at recruitment from the new technologies for cervical cancer randomized controlled trial. J Natl Cancer Inst 98(11):765–774. doi:10.1093/jnci/djj209

    Article  PubMed  Google Scholar 

  24. Clifford GM, Smith JS, Aguado T et al (2003) Comparison of HPV type distribution in high-grade cervical lesions and cervical cancer: a meta-analysis. Br J Cancer 89(1):101–105. doi:10.1038/sj.bjc.6601024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Clifford GM, Smith JS, Plummer M et al (2003) Human papillomavirus types in invasive cervical cancer worldwide: a meta-analysis. Br J Cancer 88(1):63–73. doi:10.1038/sj.bjc.6600688

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Munoz N, Bosch FX, Castellsague X et al (2004) Against which human papillomavirus types shall we vaccinate and screen? The international perspective. Int J Cancer 111(2):278–285. doi:10.1002/ijc.20244

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. T. Abe and R. Roberts, Center for Clinical Research, Keio University School of Medicine, for conducting biostatistical analysis. We also thank Dr. Tsuda, Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan and Dr. Fukunaga, Department of Pathology, The Jikei University, School of Medicine, Daisan Hospital, Tokyo, Japan for conducting central pathology. The protocol JGOG-1073 was sponsored by the Japanese Gynecologic Oncology Group.

Conflict of interest

D.A. received lecture fees from Roche Diagnostics K.K. The other authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuma Fujii.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujii, T., Saito, M., Hasegawa, T. et al. Performance of p16INK4a/Ki-67 immunocytochemistry for identifying CIN2+ in atypical squamous cells of undetermined significance and low-grade squamous intraepithelial lesion specimens: a Japanese Gynecologic Oncology Group study. Int J Clin Oncol 20, 134–142 (2015). https://doi.org/10.1007/s10147-014-0688-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-014-0688-0

Keywords

Navigation