Skip to main content
Log in

The use of periodic matrices to model the population dynamics of the long-lived semelparous Furcraea parmentieri (Asparagaceae) in a temperate forest in central Mexico

  • Original article
  • Published:
Population Ecology

Abstract

Furcraea parmentieri (Roezl ex Ortgies) García-Mend. is a long-lived, semelparous threatened species with a restricted geographic distribution. We studied the demography of this species in southwest of Mexico City using periodic matrices. We followed the fate of 404 individuals (in 2006–2007) and performed seed germination and seedling establishment experiments in the field (in 2007–2008) to estimate survival, growth and reproduction probabilities of individuals in eight size categories, according to plant height. Population structure was characterized by a high number of saplings, as well as medium and large plants. We built three annual matrices that described the demography in different phases of the population cycle: regular years (RG) characterized by low fecundity and low adult mortality; mast-seeding years (MS) with low seedling emergence and high adult mortality (related to semelparity); and post mast-seeding years (PS) with a high emergence of seedlings and bulbils. Periodic matrices were built simulating three scenarios, which consisted of mast-seeding events occurring every 5, 10, or 15 years. Finite population growth rates (λ) were 1.03 (RG year), 0.99 (MS year), and 1.25 (PS year). The long term population growth rate values projected over a 90 year period (estimated on an annual basis) were higher as the frequency of mast-seeding events increased. We estimated that individuals reproduce at an age of 60–90 years and that most new recruits originate via sexual reproduction. Although the population has a potential for growth, its persistence may be threatened due to land use change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albarrán M (2011) Biología reproductiva de Furcraea parmentieri (Agavaceae). B. Sc. Thesis, Universidad Nacional Autónoma de México. México D.F. (in Spanish with English abstract)

  • Antonovics J, McKane AJ, Newman TJ (2006) Spatiotemporal dynamics in marginal populations. Am Nat 167:16–27

    Article  CAS  PubMed  Google Scholar 

  • Arizaga-Pérez JS (1998) Biología reproductiva de Agave macroacantha Zucc. en Tehuacán, Puebla. Ph.D. Thesis, Universidad Nacional Autónoma de México. México D.F. (in Spanish)

  • Bárceinas A (2011) Genética de poblaciones de Furcraea parmentieri (Agavaceae): Estimaciones de variación y estructura genética usando ISSR’s. B. Sc. Thesis, Universidad Nacional Autónoma de México. México D.F. (in Spanish with English abstract)

  • Beissinger SR (1995) Modeling extinction in periodic environments: Everglades water levels and Snail Kite population viability. Ecol Appl 5:618–631

    Article  Google Scholar 

  • Bierzychudek P (1982) The demography of jack-in-the-pulpit, a forest perennial that changes sex. Ecol Monogr 52:335–351

    Article  Google Scholar 

  • Carrillo C (1995) El Pedregal de San Ángel. Universidad Nacional Autónoma de México, México D.F. (in Spanish)

  • Caswell H, Trevisan M (1994) Sensitivity analyses of periodic matrix models. Ecology 75:1299–1303

    Article  Google Scholar 

  • Crone EE, Ellis M, Menges E, Bell T, Bierzychudek P, Ehrlén J, Kaye T, Knight T, Lesica P, Morris W, Oostermeijer G, Quintana-Ascencio P, Ticktin T, Valverde T, Williams J (2011) How do plant ecologists use matrix population models? Ecol Lett 14:1–8

    Article  PubMed  Google Scholar 

  • Crone EE, Ellis MM, Morris WF, Stanley A, Bell T, Bierzychudek P, Ehrlén J, Kaye TN, Knight TM, Lesica P, Oostermeijer G, Quintana-Ascencio PF, Ticktin T, Valverde T, Williams JL, Doak DF, Ganesan R, McEachern K, Thorpe AS, Menges ES (2013) Ability of matrix models to explain the past and predict the future of plant populations. Conserv Biol 27:968–978

    Article  PubMed  Google Scholar 

  • Davis AS, Dixon PM, Liebman M (2004) Using matrix models to determine cropping system effects on annual weed demography. Ecol Appl 14:655–668

    Article  Google Scholar 

  • Eguiarte LE, Souza V, Silva-Montellano A (2000) Evolución de la familia Agavaceae: filogenia, biología reproductiva y genética de poblaciones. Boletín de la Sociedad Botánica de México 66:131–150 (in Spanish with English abstract)

  • Emery SM, Flory SL, Clay K, Robb JR, Winters B (2013) Demographic responses of the invasive annual grass Microstegium vimineum to prescribed fires and herbicide. For Ecol Manage 308:207–213

    Article  Google Scholar 

  • Enright N, Ogden J (1979) Applications of transition matrix models in forest dynamics: Araucaria in Papua New Guinea and Nothofagus in New Zealand. Austral Ecol 4:3–23

    Article  Google Scholar 

  • García E (2004) Modificaciones al sistema de clasificación climática de Köppen, 5th edn. Instituto de Geografía, Universidad Nacional Autónoma de México, México D.F. (in Spanish)

  • García-Mendoza AJ (2000) Revisión taxonómica de las especies arborescentes de Furcraea (Agavaceae) en México y Guatemala. Boletín de la Sociedad Botánica de México 66:113–129 (in Spanish with English abstract)

  • Golubov J, Mandujano MC, Franco M, Montaña C, Eguiarte LE, López-Portillo J (1999) Demography of the invasive woody perennial Prosopis glandulosa (honey mesquite). J Ecol 87:955–962

    Article  Google Scholar 

  • Gutterman Y (2000) Maternal effects on seeds during development. In: Fenner M (ed) Seeds: The ecology of regeneration in plant communities, 2nd edn. CAB International, Oxford, pp 59–83

    Chapter  Google Scholar 

  • Hernández-Pedrero RG (2009) Estudio poblacional de Furcraea parmentieri (Agavaceae) en bosques templados del suroeste del Distrito Federal, México. B. Sc. Thesis, Universidad Nacional Autónoma de México. México D.F. (in Spanish with English abstract)

  • Horvitz CC, Schemske DW (1995) Spatiotemporal variation in demographic transitions of a tropical understory herb: projection matrix analysis. Ecol Monogr 65:155–192

    Article  Google Scholar 

  • Ives AR, Jansen VAA (1998) Complex dynamics in stochastic tritrophic models. Ecology 79:1039–1052

    Article  Google Scholar 

  • Janzen D (1976) Why bamboos wait so long to flower. Ann Rev Ecol Syst 7:347–391

    Article  Google Scholar 

  • Jenouvrier S, Caswell H, Barbraud C, Weimerskirch H (2010) Mating behaviour, population growth, and the operational sex ratio: A periodic two-sex model approach. Am Nat 175:739–752

    Article  PubMed  Google Scholar 

  • Jongejans E, de Kroon H (2005) Space versus time variation in the population dynamics of three co-occurring perennial herbs. J Ecol 93:681–692

    Article  Google Scholar 

  • Kaye TN, Pyke DA (2003) The effect of stochastic technique on estimates of population viability from transition matrix models. Ecology 84:1464–1476

    Article  Google Scholar 

  • Keely JE, Bond WJ (1999) Mast flowering and semelparity in bamboos: the bamboo fire cycle hypothesis. Am Nat 154:383–391

    Article  Google Scholar 

  • Lesica P, Shelly JS (1995) Effects of reproductive mode on demography and life history in Arabis fecunda (Brassicaceae). Am J Bot 82:752–762

    Article  Google Scholar 

  • Mandujano MC, Montaña C, Franco M, Golubov J, Flores-Martínez A (2001) Integration of demographic annual variability in a clonal desert cactus. Ecology 82:344–359

    Article  Google Scholar 

  • Mertens SK, van den Bosch F, Heesterbeek JAP (H) (2002) Weed population and crop rotations: exploring dynamics of a structured periodic system. Ecol Appl 12:1125–1141

    Article  Google Scholar 

  • Mertens SK, Yearsley JM, van den Bosch F, Gilligan CA (2006) Transient population dynamics in periodic matrix models: methodology and effects of cycle permutations. Ecology 87:2338–2348

    Article  PubMed  Google Scholar 

  • Mondragón D, Durán R, Ramírez I, Valverde T (2004) Temporal variation in the demography of the clonal epiphyte Tillandsia brachycaulos (Bromeliaceae) in the Yucatan Peninsula, Mexico. J Trop Ecol 20:189–200

    Article  Google Scholar 

  • Nakaoka M (1997) Demography of the marine bivalve Yoldia notabilis in fluctuating environments: an analysis using a sthochastic matrix model. Oikos 79:59–68

    Article  Google Scholar 

  • Noreen EW, Griffith B, McCabe TR (1995) Evaluating growth of the Porcupine caribou herd using a stochastic model. J Wildl Manage 59:262–272

    Article  Google Scholar 

  • Olmsted I, Alvarez-Buylla ER (1995) Sustainable harvesting of tropical trees: demography and matrix models of two palm species in Mexico. Ecol Appl 5:484–500

    Article  Google Scholar 

  • Picó FX, de Kroon H, Retana J (2002) An extended flowering and fruiting season has few demographic effects in a Mediterranean perennial herb. Ecology 83:1991–2004

    Article  Google Scholar 

  • Piñero D, Martínez-Ramos M, Sarukhán J (1984) A population modelo of Astrocaryum mexicanum and a sensitivity analysis of its finite rate of increase. J Ecol 72:977–991

    Article  Google Scholar 

  • Rees M, Ellner SP (2009) Integral projection models for populations in temporally varying environments. Ecol Monogr 79:575–594

    Article  Google Scholar 

  • Rundel P, Witter M (1994) Population dynamics and flowering in a Hawaiian alpine rosette plant, Argyroxiphium sandwicense. In: Rundel P, Smith A, Meinzer F (eds) Tropical alpine environments: Plant form and function. Cambridge University Press, Cambridge, pp 296–306

    Chapter  Google Scholar 

  • Rzedowski GC, Rzedowski J (2005) Flora fanerogámica del Valle de México, 2nd edn. Instituto de Ecología, A.C. and Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Pátzcuaro (Michoacán), México (in Spanish)

  • Salguero-Gómez R, de Kroon H (2010) Matrix projection models meet variation in the real world. J Ecol 98:250–254

    Article  Google Scholar 

  • SEMARNAT (2010) Norma Oficial Mexicana NOM-059-SEMARNAT-2010, Protección ambiental - Especies nativas de México de flora y fauna silvestres - Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio - Lista de especies en riesgo. Diario Oficial de la Federación (Segunda Sección), 30 de diciembre de 2010, México (in Spanish)

  • Shyu E, Pardini EA, Knight TM, Caswell H (2013) A seasonal, density-dependent model for the management of an invasive weed. Ecol Appl 23:1893–1905

    Article  PubMed  Google Scholar 

  • Silvertown J, Franco M, Pisanty I, Mendoza A (1993) Comparative plant demography – relative importance of life-cycle components to the finite rate of increase in woody and herbaceous perennials. J Ecol 81:465–576

    Article  Google Scholar 

  • Smith A, Young T (1994) Population biology of Senecio keniodendron (Asteraceae) - an Afroalpine giant rosette plant. In: Rundel P, Smith A, Meinzer F (eds) Tropical alpine environments: Plant form and function. Cambridge University Press, Cambridge, pp 276–293

    Google Scholar 

  • Smith A, Caswell H, Mettler-Cherry P (2005) Stochastic flood and precipitation regimes and the population dynamics of a threatened floodplain plant. Ecol Appl 15:1036–1052

    Article  Google Scholar 

  • Stevens JT, Latimer AM (2015) Snowpack, fire, and forest disturbance: interactions affect montane invasions by non-native shrubs. Global Change Biol 21:2379–2393

    Article  Google Scholar 

  • Vavrek M, MacGraw J, Yang S (1997) Within-population variation in demography of Taraxacum officinale: season- and size-dependent survival, growth and reproduction. J Ecol 85:277–287

    Article  Google Scholar 

  • Young T (1994) Population biology of Mount Kenya lobelias. In: Rundel P, Smith A, Meinzer F (eds) Tropical alpine environments: Plant form and function. Cambridge University Press, Cambridge, pp 251–272

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank Dr. L.E. Eguiarte, Dr. M.C. Mandujano, Dr. S. Arizaga and Dr. A. García-Mendoza for valuable comments and suggestions to a previous version of this manuscript. We are grateful to Dr. M. Hernández-Aploinar, Dr. P.E. Mendoza-Hernandez and M.Sc. A. Mena for help and advice during field work. We also thank Dr. C. Martorell for valuable assistance with the analysis of periodic matrices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Valverde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Pedrero, R., Valverde, T. The use of periodic matrices to model the population dynamics of the long-lived semelparous Furcraea parmentieri (Asparagaceae) in a temperate forest in central Mexico. Popul Ecol 59, 3–16 (2017). https://doi.org/10.1007/s10144-017-0572-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10144-017-0572-7

Keywords

Navigation