Skip to main content
Log in

Life-history variation following habitat degradation associated with differing fine-scale spatial genetic structure in a rainforest cycad

  • Original Article
  • Published:
Population Ecology

Abstract

Habitat degradation can result in drastic environmental changes potentially affecting the life-history of populations and aspects of the reproductive biology and the genetic structure within and among populations. Here, we explore how life-history differences between subpopulations from contrasting habitats may affect mating availability, which in turn will indirectly affect the strength of spatial genetic structure within populations of a tropical rainforest cycad (Zamia fairchildiana). Subpopulations exposed to higher light availability in degraded-forest habitats had male individuals that grew faster, reproduced earlier, and invested more in reproduction than in native-forest habitat subpopulations. These differences in life history resulted in degraded-habitat subpopulations showing a higher proportion of reproductive adults and greater mate availability in a reproductive season. Subpopulations in the degraded habitat showed weaker SGS, i.e., a smaller slope in the linear regression of genetic relatedness on linear distance. Environmentally induced changes in life history and subsequent changes in the strength of the SGS after habitat degradation may have important consequences for population viability and should be of concern in conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aarssen LW, Taylor DR (1992) Fecundity allocation in herbaceous plants. Oikos 65:225–232

    Article  Google Scholar 

  • Baker TR, Swaine MD, Burslem DFRP (2003) Variation in tropical forest growth rates: combined effects of functional group composition and resource availability. Perspect Plant Ecol 6:21–36

    Article  Google Scholar 

  • Brienen RJW, Zuidema PA (2006) Lifetime growth patterns and ages of Bolivian rain forest trees obtained by tree ring analysis. J Ecol 94:481–493

    Article  Google Scholar 

  • Chazdon RL (2003) Tropical forest recovery: legacies of human impact and natural disturbances. Perspect Plant Ecol 6:51–71

    Article  Google Scholar 

  • Chazdon RL, Pearcy RW, Lee DW, Fetcher N (1996) Photosynthetic responses of tropical forest plants to contrasting light environments. In: Mulkey SS, Chazdon RL, Smith AP (eds) Tropical plant forest ecophysiology. Chapman & Hall, New York, pp 5–55

    Google Scholar 

  • Chung MY, Nason JD (2007) Spatial demographic and genetic consequences of harvesting within populations of the terrestrial orchid Cymbidium goeringii. Biol Conserv 137:125–137

    Article  Google Scholar 

  • Cipollini ML, Wallacesenft DA, Whigham DF (1994) A model of path dynamics, seed dispersal, and sex-ratio in the dioecious shrub Lindera benzoin (Lauraceae). J Ecol 82:621–633

    Article  Google Scholar 

  • Clark DA, Clark DB (1987) Temporal and environmental patterns of reproduction in Zamia skinneri, a tropical rain forest Cycad. J Ecol 75:135–149

    Article  Google Scholar 

  • Clark DB, Clark DA, Grayum MH (1992) Leaf demography of a neotropical rain forest Cycad, Zamia skinneri (Zamiaceae). Am J Bot 79:28–33

    Article  Google Scholar 

  • Cloutier D, Kanashiro M, Ciampi AY, Schoen DJ (2007) Impact of selective logging on inbreeding and gene dispersal in an Amazonian tree population of Carapa guianensis Aubl. Mol Ecol 16:797–809

    Article  CAS  PubMed  Google Scholar 

  • Cunningham SA (1997) The effect of light environment, leaf area, and stored carbohydrates on inflorescence production by a rain forest understory palm. Oecologia 111:36–44

    Article  Google Scholar 

  • Dutech C, Seiter J, Petronelli P, Joly HI, Jarne P (2002) Evidence of low gene flow in a neotropical clustered tree species in two rainforest stands of French Guiana. Mol Ecol 11:725–738

    Article  CAS  PubMed  Google Scholar 

  • England PR, Whelan RJ, Ayre DJ (2003) Effects of seed bank disturbance on the fine-scale genetic structure of populations of the rare shrub Grevillea macleayana. Heredity 91:475–480

    Article  CAS  PubMed  Google Scholar 

  • Ennos RA (1994) Estimating the relative rates of pollen and seed migration among plant populations. Heredity 72:250–259

    Article  Google Scholar 

  • Ennos RA (2001) Inferences about spatial processes in plant populations from the analysis of molecular markers. In: Silvertown J, Antonovics J (eds) Integrating ecology and evolution in a spatial context. Blackwell, Cambridge, pp 45–71

    Google Scholar 

  • Epperson BK, Chung MG (2001) Spatial genetic structure of allozyme polymorphisms within populations of Pinus strobus (Pinaceae). Am J Bot 88:1006–1010

    Article  CAS  PubMed  Google Scholar 

  • Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Glob Ecol Biogeogr 16:265–280

    Article  Google Scholar 

  • Franco M, Silvertown J (1996) Life history variation in plants: an exploration of the fast-slow continuum hypothesis. Philos Trans R Soc Lond B 351:1341–1348

    Article  Google Scholar 

  • Frankham R (1999) Quantitative genetics in conservation biology. Genet Res 74:237–244

    Article  CAS  PubMed  Google Scholar 

  • Fraser DJ, Bernatchez L (2001) Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol Ecol 10:2741–2752

    CAS  PubMed  Google Scholar 

  • Galeuchet DJ, Perret C, Fischer M (2005) Microsatellite variation and structure of 28 populations of the common wetland plant, Lychnis flos-cuculi L., in a fragmented landscape. Mol Ecol 14:991–1000

    Article  CAS  PubMed  Google Scholar 

  • Ghazoul J (2005) Pollen and seed dispersal among dispersed plants. Biol Rev 80:413–443

    Article  PubMed  Google Scholar 

  • Gomez LD (1982) Plantae Mesoamericanae novae II. Phytologia 50:401–404

    Google Scholar 

  • Gomez LD (1993) Birds as short range seed dispersers of Zamia fairchildiana in SW Costa Rica. Rev Biol Trop 41:905–906

    Google Scholar 

  • Hamilton MB, Pincus EL, DiFiore A, Fleischer R (1999) Universal linker and ligation procedures for construction of genomic DNA libraries enriched for microsatellites. Biotechniques 27:500–507

    CAS  PubMed  Google Scholar 

  • Hamrick JL, Nason JD (1996) Consequences of dispersal in plants. In: Rhodes OEJ, Chesser RK, Smith MH (eds) Population dynamics in ecological space and time. University of Chicago Press, Chicago, pp 203–236

    Google Scholar 

  • Hamrick JL, Murawski DA, Nason JD (1993) The influence of seed dispersal mechanisms on the genetic structure on tropical tree populations. Vegetatio 108:281–297

    Google Scholar 

  • Hardesty BD, Dick CW, Kremer A, Hubbell S, Bermingham E (2005) Spatial genetic structure of Simarouba amara Aubl. (Simaroubaceae), a dioecious, animal-dispersed neotropical tree, on Barro Colorado Island, Panama. Heredity 95:290–297

    Article  CAS  PubMed  Google Scholar 

  • Hardy O, Vekemans X (2002) SPAGEDI: a versatile computer program to analyze spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  CAS  Google Scholar 

  • Hardy OJ, Gonzalez-Martinez SC, Colas B, Freville H, Mignot A, Olivieri I (2004) Fine-scale genetic structure and gene dispersal in Centaurea corymbosa (Asteraceae). II. Correlated paternity within and among sibships. Genetics 168:1601–1614

    Article  PubMed  Google Scholar 

  • Hardy OJ, Maggia L, Bandou E, Breyne P, Caron H, Chevallier MH, Doligez A, Dutech C, Kremer A, Latouche-Halle C, Troispoux V, Veron V, Degen B (2006) Fine-scale genetic structure and gene dispersal inferences in 10 Neotropical tree species. Mol Ecol 15:559–571

    Article  CAS  PubMed  Google Scholar 

  • Honnay O, Jacquemyn H, Bossuyt B, Hermy M (2005) Forest fragmentation effects on patch occupancy and population viability of herbaceous plant species. New Phytol 166:723–736

    Article  PubMed  Google Scholar 

  • Hooftman DAP, Billeter RC, Schmid B, Diemer M (2004) Genetic effects of habitat fragmentation on common species of Swiss fen meadows. Conserv Biol 18:1043–1051

    Article  Google Scholar 

  • Hufford KM, Mazer SJ (2003) Plant ecotypes: genetic differentiation in the age of ecological restoration. Trends Ecol Evol 18:147–155

    Article  Google Scholar 

  • Ingvarsson PK, Giles BE (1999) Kin-structured colonization and small-scale genetic differentiation in Silene dioica. Evolution 53:605–611

    Article  Google Scholar 

  • Jacquemyn H, Van Rossum F, Brys R, Endels P, Hermy M, Triest L, De Blust G (2003) Effects of agricultural land use and fragmentation on genetics, demography and population persistence of the rare Primula vulgaris, and implications for conservation. Belg J Bot 136:5–22

    Google Scholar 

  • Jacquemyn H, Brys R, Honnay O, Hermy M, Roldan-Ruiz I (2005) Local forest environment largely affects below-ground growth, clonal diversity and fine-scale spatial genetic structure in the temperate deciduous forest herb Paris quadrifolia. Mol Ecol 14:4479–4488

    Article  CAS  PubMed  Google Scholar 

  • Jones FA, Hubbell SP (2006) Demographic spatial genetic structure of the Neotropical tree, Jacaranda copaia. Mol Ecol 15:3205–3217

    Article  CAS  PubMed  Google Scholar 

  • Jones FA, Hamrick JL, Peterson CJ, Squiers ER (2006) Inferring colonization history from analyses of spatial genetic structure within populations of Pinus strobus and Quercus rubra. Mol Ecol 15:851–861

    Article  CAS  PubMed  Google Scholar 

  • Kalisz S, Nason JD, Hanzawa FM, Tonsor SJ (2001) Spatial population genetic structure in Trillium grandiflorum: the roles of dispersal, mating, history, and selection. Evolution 55:1560–1568

    CAS  PubMed  Google Scholar 

  • Latouche-Halle C, Ramboer A, Bandou E, Caron H, Kremer A (2003) Nuclear and chloroplast genetic structure indicate fine-scale spatial dynamics in a neotropical tree population. Heredity 91:181–190

    Article  CAS  PubMed  Google Scholar 

  • Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic-structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82:1420–1425

    Article  Google Scholar 

  • Marquis RJ, Newell EA, Villegas AC (1997) Non-structural carbohydrate accumulation and use in an understorey rainforest shrub and relevance for the impact of leaf herbivory. Funct Ecol 11:636–643

    Article  Google Scholar 

  • Moritz C (1994) Defining “evolutionary significant units” for conservation. Trends Ecol Evol 9:373–375

    Article  Google Scholar 

  • Murawski DA, Hamrick JL (1991) The effect of the density of flowering individuals on the mating systems of 9 tropical tree species. Heredity 67:167–174

    Article  Google Scholar 

  • Murren CJ (2003) Spatial and demographic population genetic structure in Catasetum viridiflavum across a human-degraded habitat. J Evol Biol 16:333–342

    Article  CAS  PubMed  Google Scholar 

  • Nason JD, Hamrick JL (1997) Reproductive and genetic consequences of forest fragmentation: two case studies of neotropical canopy trees. J Hered 88:264–276

    Google Scholar 

  • Negron-Ortiz V, Gorchov DL (2000) Effects of fire season and postfire herbivory on the cycad Zamia pumila (Zamiaceae) in slash pine savanna, Everglades National Park, Florida. Int J Plant Sci 161:659–669

    Article  CAS  Google Scholar 

  • Negron-Ortiz V, Gorchov DL, Breckon GJ (1996) Population structure in Zamia (Zamiaceae) in Northern Puerto Rico. II Seed germination and stage structured population projection. Int J Plant Sci 157:605–614

    Article  Google Scholar 

  • Nicotra AB (1998) Sex ratio variation and spatial distribution of Siparuna grandiflora, a tropical dioecious shrub. Oecologia 115:102–113

    Article  Google Scholar 

  • Noble IR, Dirzo R (1997) Forest as human-dominated ecosystems. Science 277:522–525

    Article  CAS  Google Scholar 

  • Norstog KJ, Fawcett PK (1989) Insect cycad symbiosis and its relation to the pollination of Zamia furfuracea (Zamiaceae) by Rhopalotria mollis (Curculionidae). Am J Bot 76:1380–1394

    Article  Google Scholar 

  • Norstog KJ, Nicholls TJ (1997) The biology of the cycads. Cornell University Press, Ithaca

    Google Scholar 

  • Ornduff R (1987) Sex ratios and coning frequency of the cycad Zamia pumila L (Zamiaceae) in the Dominic Replubic. Biotropica 19:361–364

    Article  Google Scholar 

  • Ornduff R (1996) Gender performance in a cultivated cohort of the cycad Zamia integrifolia (Zamiaceae). Am J Bot 83(8):1006–1015

    Article  Google Scholar 

  • Perez-Farrera MA, Vovides AP, Octavio-Aguilar P, Gonzalez-Astorga J, de la Cruz-Rodriguez J, Hernandez-Jonapa R, Villalobos-Mandez SM (2006) Demography of the cycad Ceratozamia mirandae (Zamiaceae) under disturbed and undisturbed conditions in a biosphere reserve of Mexico. Plant Ecol 187:97–108

    Article  Google Scholar 

  • Ritland K (1996) Estimators for pairwise relatedness and individual inbreeding coefficients. Genetical Res 67:175–185

    Article  Google Scholar 

  • Rousset F (1996) Equilibrium values of measures of populations subdivision for stepwise mutation processes. Genetics 142:1357–1362

    CAS  PubMed  Google Scholar 

  • Schnabel A, Nason JD, Hamrick JL (1998) Understanding the population genetic structure of Gleditsia triacanthos L.: seed dispersal and variation in female reproductive success. Mol Ecol 7:819–832

    Article  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) ARLEQUIN: a software for population genetics data analysis, version 2.0. Genetics and Biometry Laboratory, University of Geneva, Switzerland

    Google Scholar 

  • Sih A, Jonsson BG, Luikart G (2000) Habitat loss: ecological, evolutionary and genetic consequences. Trends Ecol Evol 15:132–134

    Article  Google Scholar 

  • SPSS (2004) SPSS, Statistical Package for the Social Sciences, version 13.0

  • Stacy EA, Hamrick JL, Nason JD, Hubbell SP, Foster RB, Condit R (1996) Pollen dispersal in low-density populations of three neotropical tree species. Am Nat 148:275–298

    Article  Google Scholar 

  • Svenning JC (2002) Crown illumination limits the population growth rate of a neotropical understorey palm (Geonoma macrostachys, Arecaceae). Plant Ecol 159:185–199

    Article  Google Scholar 

  • Tabarelli M, Da Silva MJC, Gascon C (2004) Forest fragmentation, synergisms and the impoverishment of neotropical forests. Biodivers Conserv 13:1419–1425

    Article  Google Scholar 

  • Tang W (1987) Insect pollination in the cycad Zamia pumila (Zamiaceae). Am J Bot 74:90–99

    Article  Google Scholar 

  • Tang W (1990) Reproduction in the cycad Zamia pumila in a fire-climax habitat: an eight year study. Bull Torrey Bot Club 117:368–374

    Article  Google Scholar 

  • Torimaru T, Tani N, Tsumura Y, Nishimura N, Tomaru N (2007) Effects of kin-structured seed dispersal on the genetic structure of the clonal dioecious shrub Ilex leucoclada. Evolution 61:1289–1300

    Article  CAS  PubMed  Google Scholar 

  • Ueno S, Tomaru N, Yoshimaru H, Manabe T, Yamamoto S (2006) Effects of canopy gaps on the genetic structure of Camellia japonica saplings in a Japanese old-growth evergreen forest. Heredity 96:304–310

    Article  CAS  PubMed  Google Scholar 

  • van Rossum F, Triest L (2006) Fine-scale genetic structure of the common Primula elatior (Primulaceae) at an early state of population fragmentation. Am J Bot 93:1281–1288

    Article  Google Scholar 

  • Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13:921–935

    Article  CAS  PubMed  Google Scholar 

  • Wells GP, Young AG (2002) Effects of seed dispersal on spatial genetic structure in populations of Rutidosis leptorrhychoides with different levels of correlated paternity. Genet Res 79:219–226

    Article  PubMed  Google Scholar 

  • Wheelwright NT, Bruneau A (1992) Population sex-ratios and spatial distribution of Ocotea tenera (Lauraceae) trees in a tropical forest. J Ecol 80:425–432

    Article  Google Scholar 

  • Yamagishi H, Tomimatsu H, Ohara M (2007) Fine-scale spatial genetic structure within continuous and fragmented populations of Trillium camschatcense. J Hered 98:367–372

    Article  CAS  PubMed  Google Scholar 

  • Young AG, Merriam HG (1994) Effects of forest fragmentation on the spatial genetic-structure of Acer saccharum Marsh (Sugar Maple) populations. Heredity 72:201–208

    Article  Google Scholar 

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418

    Article  Google Scholar 

Download references

Acknowledgments

We thank the personnel at Corcovado National Park (Costa Rica) for assistance in the field. The genetic analyses were performed in the laboratories of Dr. Mohamed Noor at Louisiana State University and Dr. Loren Rieseberg at Indiana University, and we thank all people in these laboratories for their support. Funding was provided by the University of New Orleans, The Cycad Society, and NSF DEB75250 to Dr. Pamela O’Neil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Lopez-Gallego.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopez-Gallego, C., O’Neil, P. Life-history variation following habitat degradation associated with differing fine-scale spatial genetic structure in a rainforest cycad. Popul Ecol 52, 191–201 (2010). https://doi.org/10.1007/s10144-009-0171-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10144-009-0171-3

Keywords

Navigation