Skip to main content
Log in

Characterization of miR061 and its target genes in grapevine responding to exogenous gibberellic acid

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs), as an important growth regulator, are also involved in gibberellic acid (GA) signaling, revealing much relationship between miRNAs and GA in various plant responses. Grape is highly sensitive to GA3, which plays a significant regulatory role in regulation of flower development, berry expansion, berry set, berry ripening, and seedlessness induction; further, it was found that grapevine miR061 (VvmiR061) is a GA3 responsive miRNA. In this study, grapevine REV (VvREV) and HOX32 (VvHOX32), two target genes of VvmiR061, were predicted, verified, and cloned; homologous conservation was analyzed in various plants. The expression profiles of both VvmiR061 and its target genes (VvREV and VvHOX32) under GA3 treatment were detected by qRT-PCR during grapevine flower and berry development. Results revealed that GA3 treatment has upregulated the transcription of VvREV and VvHOX32, while it downregulated the expression of VvmiR061. The function of VvmiR061 in cleaving target genes VvREV and VvHOX32 was diminished by GA3 treatment during flower developmental process. The results of this study exhibited the importance of VvmiR061 in regulating flower development and GA3 signaling pathway and also contributed some to the knowledge of small RNA-mediated regulation in grape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 4
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abu-Zahra TR (2010) Berry size of Thompson seedless as influenced by the application of gibberellic acid and can girdling. Pak J Bot 42:1755–1760

    Google Scholar 

  • Achard P, Herr A, Baulcombe DC, Harberd NP (2004) Modulation of floral development by a gibberellin-regulated microRNA. Development 131:3357–3365

    Article  CAS  PubMed  Google Scholar 

  • Addo-Quaye C, Eshoo TM, Bartel DP, Axtell MJ (2008) Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol 18:758–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agalou A, Purwantomo S, Övernäs E, Johannesson H, Zhu XY, Estiati A, de Kam RJ, Engstrom P, Slamet-Loedin IH, Zhu Z, Wang M, Xiong LZ, Meijer AH, Ouwerkerk PBF (2008) A genome-wide survey of HD-Zip genes in rice and analysis of drought-responsive family members. Plant Mol Bio l66:87–103

    Article  Google Scholar 

  • Allison MC, Bouché N (2008) microRNA-directed regulation: to cleave or not cleave. Trends Plant Sci 13:359–367

    Article  Google Scholar 

  • Alptekin B, Budak H (2016) Wheat miRNA ancestors: evident by transcriptome analysis of A, B, and D genome donors. Funct Integr Genomics. doi:10.1007/s10142-016-0487-y

    PubMed Central  Google Scholar 

  • Alptekin B, Langridge P, Budak H (2016) Abiotic stress miRNomes in the Triticeae. Funct Integr Genomics. doi:10.1007/s10142-016-0525-9

    PubMed Central  Google Scholar 

  • Alptekin B, Akpinar AB, Budak H (2017) A comprehensive prescription for plant miRNA identification. Front Plant Sci. doi:10.3389/fpls.2016.02058

    PubMed  PubMed Central  Google Scholar 

  • Ariel FD, Manavella PA, Dezar CA, Chan RL (2007) The true story of the HD-Zip family. Trends Plant Sci 12:419–426

    Article  CAS  PubMed  Google Scholar 

  • Boss PK, Thomas MR (2002) Association of dwarfism and floral induction with a grape ‘green revolution’ mutation. Nature 416:847–850

    Article  CAS  PubMed  Google Scholar 

  • Budak H, Akpinar A (2011) Dehydration stress-responsive miRNA in Brachypodium distachyon: evident by genome-wide screening of microRNAs expression. OMICS 15:791–799

    Article  CAS  PubMed  Google Scholar 

  • Budak H, Akpinar (2015) Plant miRNAs: biogenesis, organization and origins. Funct Integr Genomics 15:523–531

    Article  CAS  PubMed  Google Scholar 

  • Budak H, Kantar M, Bulut R, Akpinar BA (2015a) Stress responsive miRNAs and isomiRs in cereals. Plant Sci 235:1–13

    Article  CAS  PubMed  Google Scholar 

  • Budak H, Khan Z, Kantar M (2015b) History and current status of wheat miRNAs using next-generation sequencing and their roles in development and stress. Brief Funct Genomics 14:189–198

    Article  PubMed  Google Scholar 

  • Budak H, Bulut R, Kantar M, Alptekin B (2016) MicroRNA nomenclature and the need for a revised naming prescription. Brief Funct Genomics 15:65–71

    PubMed  Google Scholar 

  • Carlsbecker A, Lee JY, Roberts CJ, Dettmer J, Lehesranta S, Zhou J, Lindgren O, Moreno-Risueno MA, Vatén A, Thitamadee S, Campilho A, Sebastian J, Bowman JL, Helariutta Y, Benfey PN (2010) Cell signaling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465:316–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carra A, Mica E, Gambino G, Pindo M, Moser C, Pe ME, Schubert A (2009) Cloning and characterization of small non-coding RNAs from grape. Plant J 59:750–763

    Article  CAS  PubMed  Google Scholar 

  • Chen X (2008) MicroRNA metabolism in plants. Curr Top Microbiol Immunol 320:117–136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng C, Xu X, Singer SD, Li J, Zhang H, Gao M, Wang L, Song JY, Wang XP (2013) Effect of GA3 treatment on seed development and seed related gene expression in grape. PLoS One 8:e80044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng CX, Jiao C, Singer SD, Gao M, Xu XZ, Zhou YM, Li Z, Fei ZJ, Wang YJ, Wang XP (2015) Gibberellin-induced changes in the transcriptome of grapevine (Vitis labrusca × V. vinifera) cv. Kyoho flowers. BMC Genomics 16:128

    Article  PubMed  PubMed Central  Google Scholar 

  • Depuydt S, Hardtke CS (2011) Hormone signaling crosstalk in plant growth regulation. Curr Biol 21:R365–R373

    Article  CAS  PubMed  Google Scholar 

  • Floyd SK, Zalewski CS, Bowan JL (2006) Evolution of class III homeodomain-leucine zipper genes in streptophytes. Genetics 173:373–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • German MA, Pillay M, Jeong DH, Hetawal A, Luo S, Janardhanan P, Kannan V, Rymarquis LA, Nobuta K, German R, De Paoli E, Lu C, Schroth G, Meyers BC, Green PJ (2008) Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol 26:941–946

    Article  CAS  PubMed  Google Scholar 

  • Han J, Fang J, Wang C, Yin Y, Sun X, Leng X, Song C (2014) Grapevine microRNAs responsive to exogenous gibberellin. BMC Genomics 15:111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilegems M, Douet V, Meylan-Bettex M, Uyttewaal M, Brand L, Browman JL, Stieger PA (2010) Interplay of auxin, KANADI and class III HD-ZIP transcription factors in vascular tissue formation. Development 137:975–984

    Article  CAS  PubMed  Google Scholar 

  • Itoh JI, Hibara KI, Sato Y, Nagato Y (2008) Development role and auxin responsiveness of class III homeodomain leucine zipper gene family members in rice. Plant Physiol 147:1960–1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia H, Wang C, Zhang C, Muhammad SH, Zhao P, Liu Z, Shangguan L, Traiq P, Fang J (2016) Functional analysis of VvBG1 during fruit development and ripping of grape. J Plant Growth Regul 35:987–999

    Article  CAS  Google Scholar 

  • Kim YS, Kim SG, Lee M, Lee I, Park HY, Seo PJ, Jung JH, Kwon EJ, Suh SW, Paek KH, Park CM (2008) HD-ZIP III activity is modulated by competitive inhibitors via a feedback loop in Arabidopsis shoot apical meristem development. Plant Cell 20:920–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Jung JH, Reyes JL, Kim YS, Kim SY, Chuang KS, Kim JA, Lee M, Lee Y, Kim VN, Chua NH, Park CM (2015) MicroRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems. Plant J 42:84–94

    Article  Google Scholar 

  • Ko JH, Prassinos C, Han KH (2006) Developmental and seasonal expression of PtaHB1, a populus gene encoding a class III HD-Zip protein, is closely associated with secondary growth and inversely correlated with the level of microRNA (miR166). New Phytol 169:469–478

    Article  CAS  PubMed  Google Scholar 

  • La Rota C, Chopard J, Das P, Paindavoine S, Rozier F, Farcot E, Godin C, Trass J, Monéger F (2011) A data-driven integrative model of sepal primordium polarity in Arabidopsis. Plant Cell 23:4318–4333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lechner E, Leonhardt N, Eisler H, Parmentier Y, Alioua M, Jacquet H, Leung J, Genschik P (2011) MATH/BTB CRL3 receptors target the homeodomain-leucine zipper ATHB6 to modulate abscisic acid signaling. Dev Cell 21:1116–1128

    Article  CAS  PubMed  Google Scholar 

  • Llave C, Xie Z, Kasschau KD, Carrington JC (2002) Cleavage of scarecrow-like mRNA targets directs directed by a class of Arabidopsis miRNA. Science 297:2053–2056

    Article  CAS  PubMed  Google Scholar 

  • Lucas SJ, Bastas K, Budak H (2014) Exploring the interaction between small RNAs and R genes during Brachypodium response to Fusarium culmorum infection. Gene 536:254–264

    Article  CAS  PubMed  Google Scholar 

  • Magnani E, Barton MK (2011) A per-arnt-sim-like sensor domain uniquely regulates the activity of the homeodomain leucine zipper transcription factor REVOLUTA in Arabidopsis. Plant Cell 23:567–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallory AC, Bouche N (2008) MicroRNA-directed regulation: to cleave or not to cleave. Trends Plant Sci 13:359–367

    Article  CAS  PubMed  Google Scholar 

  • Mallory AC, Vaucheret H (2006) Functions of microRNAs and related small RNAs in plants. Nat Genet 38:S31–S38

    Article  CAS  PubMed  Google Scholar 

  • Matus JT, Poupin MJ, Cañón P, Bordeu E, Alcalde JA, Arce-Johnson P (2010) Isolation of WDR and bHLH genes related to flavonoid synthesis in grapevine (Vitis vinifera L.) Plant Mol Biol 72:607–620

    Article  CAS  PubMed  Google Scholar 

  • McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK (2001) Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411:709–713

    Article  CAS  PubMed  Google Scholar 

  • Möglich A, Yang XJ, Ayers RA, Moffat K (2010) Structure and function of plant photoreceptors. Annu Rev Plant Biol 61:21–47

    Article  PubMed  Google Scholar 

  • Pantaleo V, Szittya G, Moxon S, Miozzi L, Moulton V, Dalmay T, Burgyan J (2010) Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant J 62:960–967

    CAS  PubMed  Google Scholar 

  • Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, Clark SE (2005) Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell 17:61–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robischon M, Du J, Miura E, Groover A (2011) The Populus class III HD ZIP, popREVOLUTA, influences cambium initiation and patterning of wood stems. Plant Physiol 155:1214–1225

    Article  CAS  PubMed  Google Scholar 

  • Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of miRNAs on the plan transcriptome. Dev Cell 8:517–527

    Article  CAS  PubMed  Google Scholar 

  • Schwechheimer C, Willige BC (2009) Shedding light on gibberellic acid singalling. Curr Opin Plant Biol 12:57–62

    Article  CAS  PubMed  Google Scholar 

  • Shan CM, Shangguan XX, Zhao B, Zhang XF, Chao LM, Yang CQ, Wang LJ, Zhu HY, Zeng YD, Guo WZ, Zhou BL, Hu GJ, Guan XY, Chen ZJ, Wendel JF, Zhang TZ, Chen XY (2014) Control of cotton fibre elongation by a homeodomain transcription factor GhHOX3. Nat Commun 5:5519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith AR, Long JA (2010) Control of Arabidopsis apical-basal embryo polarity by antagonistic transcription factors. Nature 464:423–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song CN, Fang JG, Li XY, Liu H, Thomas Chao C (2009) Identification and characterization of 27 conserved microRNAs in citrus. Planta 230:671–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song C, Jia Q, Fang J, Li F, Wang C, Zhang Z (2010) Computational identification of citrus microRNAs and targets analysis in citrus expressed sequence tags. Plant Biol 12:927–934

  • Sun X, Nicholas KK, Han J, Shangguan LF, Kayesh E, Leng XP, Fang JG (2012) Characterization of grapevine microR164 and its target genes. Mol Bol Rep 39:9463–9472

    Article  CAS  Google Scholar 

  • Sun X, Xie Z, Zhang C, Mu Q, Wu W, Wang B, Fang J (2016) A characterization of grapevine of GRAS domain transcription factor gene family. Funct Integr Genomics 16:347–363

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Wang X, Nicholas KK, Song C, Zhang C, Li X, Han J, Fang J (2011) Deep sequencing of grapevine flower and berry short RNA library for discovery of new microRNAs and validation of precise sequences of grapevine microRNAs deposited in miRBase. Physiol Plantarum 143:64–81

    Article  CAS  Google Scholar 

  • Wang C, Han J, Liu C, Kibet KN, Kayesh E, Shangguan L, Li X, Fang J (2012a) Identification of microRNAs from Amur grape (Vitis amurensis Rupr.) by deep sequencing and analysis of microRNA variations with bioinformatics. BMC Genomics 13:122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Zhao F, Zhao X, Ge H, Chai LJ, Chen SW, Perl A, Ma HQ (2012b) Proteomic analysis of berry-sizing effect of GA3 on seedless Vitis vinifera L. Proteomics 12:86–94

    Article  PubMed  Google Scholar 

  • Wang C, Han J, Nicholas KK, Wang XC, Liu H, Li XY, Leng XP, Fang JG (2013) The characterization of target mRNAs for table grapevines miRNAs with an intergraded strategy of modified RLM RACE, PPM RACE and qRT-PCRs of cleavage products. J Plant Physiol 170:943–957

    Article  CAS  PubMed  Google Scholar 

  • Wenkel S, Emery J, Hou BH, Evans MMS, Barton MK (2007) A feedback regulatory module formed by LITTLE ZIPPER and HD-ZIPIII genes. Plant Cell 19:3379–3390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams L, Grigg SP, Xie M, Christensen S, Fletcher JC (2005) Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Development 132:3657–3668

    Article  CAS  PubMed  Google Scholar 

  • Wilson DN, Chuang H, Elliott RC, Bremer E, George D, Koh S (2005) Microarray analysis of postictal transcriptional regulation of neuropeptides. J Mol Neurosci 25:285–298

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    Article  CAS  PubMed  Google Scholar 

  • Yu S, Galvão VC, Zhang YC, Horrer D, Zhang TQ, Hao YH, Feng YQ, Wang S, Schmid M, Wang JW (2012) Gibberellin regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA promoter binding-like transcription factors. Plant Cell 24:3320–3332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (NSFC) (31301759), Opening Project of State Key Laboratory of Crop Genetics and Germplasm Enhancement (ZW2014009), and China Postdoctoral Science Foundation Funded Project (2016M590465).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chen Wang or Lingfei Shangguan.

Additional information

Mengqi Wang and Xin Sun contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Sun, X., Wang, C. et al. Characterization of miR061 and its target genes in grapevine responding to exogenous gibberellic acid. Funct Integr Genomics 17, 537–549 (2017). https://doi.org/10.1007/s10142-017-0554-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-017-0554-z

Keywords

Navigation