Skip to main content
Log in

Genome-wide analysis of miRNAs and Tasi-RNAs in Zea mays in response to phosphate deficiency

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Globally important cereal crop maize provides important nutritions and starch in dietary foods. Low phosphate (LPi) availability in the soil frequently limits the maize quality and yield across the world. Small non-coding RNAs (Snc-RNAs) play crucial roles in growth and adaptation of plants to the environment. Snc-RNAs like microRNAs (miRs) and trans-acting small interfering RNAs (Tasi-Rs) play important functions in posttranscriptional regulation of gene expression, which controls plant development, reproduction, and biotic/abiotic stress responses. In order to identify the miR and Tasi-R alterations in leaf and root of maize in response to sufficient phosphate and LPi at 3LS and 4LS, the snc-RNA population libraries for 0th, 1st, 2nd, 4th, and 8th day were constructed. These libraries were used for genome-wide alignment and RNA-fold analysis for possible prediction of potential miRs and Tasi-Rs. This study reported 174 known and conserved differentially expressed miRs of 27 miR families of maize plant. In addition, leaf and root specific potential novel miRs representing 155 new families were also discovered. Differentially expressed conserved as well as novel miR functions in root and leaf during early stage of Pi starvation were extensively discussed. Leaf and root specific miRs as well as common miRs with their target genes, participating in different biological, cellular, and metabolic processes were explored. Further, four miR390-directed Tasi-Rs which belong to TAS3 gene family along with other orthologs of Tasi-Rs were also identified. Finally, the study provides an insight into the composite regulatory mechanism of miRs in maize in response to Pi deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

LPi:

Low phosphate

SPi:

Sufficient phosphate

LS:

Leaf stage

snc-RNAs:

Small non-coding RNAs

miRs:

MicroRNAs

Tasi-Rs:

Trans-acting small interfering RNAs

SnoRNAs:

Small nucleolar RNAs

SnRNAs:

Small nuclear RNAs

SiRNAs:

Small interfering RNAs

RISC-RNA:

Induced silencing complex

MFE:

Minimum free energy

PNRD:

Plant non-coding RNA databases

TPM:

Transcripts per million

GO:

Gene ontology

FC:

Fold change

REVGO:

Reduced visualize gene ontology

References

  • Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7(10):986–995

    CAS  PubMed  Google Scholar 

  • Aung K, Lin SI, Wu CC, Huang YT, Su CL, Chiou TJ (2006) pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol 14(3):1000–1011

    Article  Google Scholar 

  • Axtell MJ, Jan C, Rajagopalan R, Bartel DP (2006) A two-hit trigger for siRNA biogenesis in plants. Cell 127(3):565–577

    Article  CAS  PubMed  Google Scholar 

  • Alptekin B, Langridge P, Budak H (2016) Abiotic stress miRNomes in the Triticeae. Functional & Integrative Genomics:1–26

  • Alptekin, B., & Budak, H. (2016). Wheat miRNA ancestors: evident by transcriptome analysis of A, B, and D genome donors. Functional & integrative genomics, 1–17.

  • Baek D, Park HC, Kim MC, Yun DJ (2013) The role of Arabidopsis MYB2 in miR399f-mediated phosphate-starvation response. Plant Signal Behav 8(3):362–373

    Article  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431(7006):356–363

    Article  CAS  PubMed  Google Scholar 

  • Bazin J, Khan GA, Combier JP, Bustos-Sanmamed P, Debernardi JM, Rodriguez R, Lelandais-Brière C (2013) miR396 affects mycorrhization and root meristem activity in the legume Medicago truncatula. Plant J 74(6):920–934

    Article  CAS  PubMed  Google Scholar 

  • Billoud B, De Paepe R, Baulcombe D, Boccara M (2005) Identification of new small non-coding RNAs from tobacco and Arabidopsis. Biochimie 87(9):905–910

    Article  CAS  PubMed  Google Scholar 

  • Budak H, Kantar M, Bulut R, Akpinar BA (2015a) Stress responsive miRNAs and isomiRs in cereals. Plant Sci 235:1–13

    Article  CAS  PubMed  Google Scholar 

  • Budak H, Akpinar BA (2015) Plant miRNAs: biogenesis, organization and origins. Functional & integrative genomics 15(5):523–531

    Article  CAS  Google Scholar 

  • Budak H, Khan Z, Kantar M (2015b) History and current status of wheat miRNAs using next-generation sequencing and their roles in development and stress. Briefings in functional genomics 14(3):189–198

    Article  PubMed  Google Scholar 

  • Chen YF, Li LQ, Xu Q, Kong YH, Wang H, Wu WH (2009) The WRKY6 transcription factor modulates PHOSPHATE1 expression in response to low Pi stress in Arabidopsis. Plant Cell 21(11):3554–3566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZH, Bao ML, Sun YZ, Yang YJ, Xu XH, Wang JH, Zhu MY (2011) Regulation of auxin response by miR393-targeted transport inhibitor response protein 1 is involved in normal development in Arabidopsis. Plant Mol Biol 77(6):619–629

    Article  CAS  PubMed  Google Scholar 

  • Chena HM, Chena LT, Patelb K, Lia YH, Baulcombeb DC, Wua SH (2010) 22-nucleotide RNAs trigger secondary siRNA biogenesis in plants. PNAS 107(34):15269–15274

    Article  Google Scholar 

  • Chiou TJ, Aung K, Lin SI, Wu CC, Chiang SF, Su CL (2006) Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18(2):412–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui LG, Shan JX, Shi M, Gao JP, Lin HX (2014) The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. Plant J 80(6):1108–1117

    Article  CAS  PubMed  Google Scholar 

  • Cakir O, Candar-Cakir B, Zhang B (2016) Small RNA and degradome sequencing reveals important microRNA function in Astragalus chrysochlorus response to selenium stimuli. Plant Biotechnol J 14(2):543–556

    Article  CAS  PubMed  Google Scholar 

  • da Silva AC, Grativol C, Thiebaut F, Hemerly AS, Ferreira PCG (2016) Computational identification and comparative analysis of miRNA precursors in three palm species. Planta 243(5):1265–1277

    Article  PubMed  Google Scholar 

  • Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39(suppl 2):W155–W159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devaiah BN, Karthikeyan AS, Raghothama KG (2007a) WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol 143(4):1789–1801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devaiah BN, Nagarajan VK, Raghothama KG (2007b) Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6. Plant Physiol 145(1):147–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dotto MC, Petsch KA, Aukerman MJ, Beatty M, Hammell M, Timmermans MC (2014) Genome-wide analysis of leafbladeless1-regulated and phased small RNAs underscores the importance of the TAS3 ta-siRNA pathway to maize development. PLoS Genet 10(12):e1004826

    Article  PubMed  PubMed Central  Google Scholar 

  • Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res:W64-70. doi:10.1093/nar/gkq310

  • Falaleeva, M., Pages, A., Matuszek, Z., Hidmi, S., Agranat-Tamir, L., Korotkov, K., & Stamm, S. (2016). Dual function of C/D box small nucleolar RNAs in rRNA modification and alternative pre-mRNA splicing. Proceedings of the National Academy of Sciences, 113(12), E1625-E1634.

  • Feng XM, Qiao Y, Mao K, Hao YJ, You CX (2010) Overexpression of arabidopsis AtmiR408 gene in tobacco. Acta Biol Cracov Ser Bot 52(2):26–31

    Google Scholar 

  • Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK (2005) A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol 15(22):2038–2043

    Article  CAS  PubMed  Google Scholar 

  • Gifford ML, Dean A, Gutierrez RA, Coruzzi GM, Birnbaum KD (2008) Cell-specific nitrogen responses mediate developmental plasticity. Proc Natl Acad Sci 105(2):803–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert N (2009) Environment: the disappearing nutrient. Nature 461(7265):716

    Article  CAS  PubMed  Google Scholar 

  • Gou JY, Felippes FF, Liu CJ, Weigel D, Wang JW (2011) Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell 23(4):1512–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Jadaun A, Kumar H, Raj U, Varadwaj PK, Rao AR (2015) Exploration of new drug-like inhibitors for serine/threonine protein phosphatase 5 of plasmodium falciparum: a docking and simulation study. J Biomol Struct Dyn 33(11):2421–2441

    Article  CAS  PubMed  Google Scholar 

  • He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531

    Article  CAS  PubMed  Google Scholar 

  • Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31(13):3429–3431 Chicago

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holley CL, Topkara VK (2011) An introduction to small non-coding RNAs: miRNA and snoRNA. Cardiovasc Drugs Ther 25(2):151–159

    Article  CAS  PubMed  Google Scholar 

  • Hsieh LC, Lin SI, Shih ACC, Chen JW, Lin WY, Tseng CY, Chiou TJ (2009) Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol 151(4):2120–2132

    Article  PubMed  PubMed Central  Google Scholar 

  • Hüttenhofer A, Schattner P, Polacek N (2005) Non-coding RNAs: hope or hype. Trends Genet 21(5):289–297

    Article  PubMed  Google Scholar 

  • Jiang C, Gao X, Liao L, Harberd NP, Fu X (2007) Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellin-DELLA signaling pathway in Arabidopsis. Plant Physiol 145(4):1460–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14(6):787–799

    Article  CAS  PubMed  Google Scholar 

  • Ju J, Kim DH, Bi L, Meng Q, Bai X, Li Z, Edwards JR (2006) Four-color DNA sequencing by synthesis using cleavable fluorescent nucleotide reversible terminators. Proc Natl Acad Sci 103(52):19635–19640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katiyar A, Smita S, Muthusamy SK, Chinnusamy V, Pandey DM, Bansal KC (2015) Identification of novel drought-responsive microRNAs and trans-acting siRNAs from Sorghum bicolor (L.) Moench by high-throughput sequencing analysis. Front Plant Sci:6,506

  • Kim JH, Choi D, Kende H (2003) The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis. Plant J 36(1):94–104

    Article  CAS  PubMed  Google Scholar 

  • Kiss T, Toth M, Solymosy F (1985) Plant small nuclear RNAs. Eur J Biochem 152(2):259–266

    Article  CAS  PubMed  Google Scholar 

  • Kong WW, Yang ZM (2010) Identification of iron-deficiency responsive microRNA genes and cis-elements in Arabidopsis. Plant Physiol Biochem 48(2):153–159

    Article  CAS  PubMed  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leyva-González MA, Ibarra-Laclette E, Cruz-Ramírez A, Herrera-Estrella L (2012) Functional and transcriptome analysis reveals an acclimatization strategy for abiotic stress tolerance mediated by Arabidopsis NF-YA family members. PLoS One 7(10):e48138

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  • Li WX, Oono Y, Zhu J, He XJ, Wu JM, Iida K, Zhu JK (2008) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20(8):2238–2251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Cui X, Meng Z, Huang X, Xie Q, Wu H, Liang W (2012) Transcriptional regulation of Arabidopsis MIR168a and argonaute1 homeostasis in abscisic acid and abiotic stress responses. Plant Physiol 158(3):1279–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Zhang X, Liu X, Zhao Y, Wang B, Zhang J (2016) miRNA alterations are important mechanism in maize adaptations to low-phosphate environments. Plant Sci 252:103–117

    Article  CAS  PubMed  Google Scholar 

  • Lin, S. I., Santi, C., Jobet, E., Lacut, E., El Kholti, N., Karlowski, W. M., & Guiderdoni, E. (2010). Complex regulation of two target genes encoding SPX-MFS proteins by rice miR827 in response to phosphate starvation. Plant and Cell Physiology, 51(12), 2119–2131.

  • Lin WY, Huang TK, Chiou TJ (2013) Nitrogen limitation adaptation, a target of microRNA827, mediates degradation of plasma membrane–localized phosphate transporters to maintain phosphate homeostasis in Arabidopsis. Plant Cell 25(10):4061–4074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma CL, Qi YP, Liang WW, Yang LT, Lu YB, Guo P, Chen LS (2016) MicroRNA regulatory mechanisms on Citrus sinensis leaves to magnesium-deficiency. Front Plant Sci 7:201

    PubMed  PubMed Central  Google Scholar 

  • Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Griffiths-Jones S (2008) Criteria for annotation of plant MicroRNAs. Plant Cell 20(12):3186–3190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan M, Anders S, Lawrence M, Aboyoun P, Pagès H, Gentleman R (2009) ShortRead: a bioconductor package for input, quality assessment and exploration of high-throughput sequence data. Bioinformatics 25(19):2607–2608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naya L, Paul S, Valdés-López O, Mendoza-Soto AB, Nova-Franco B, Sosa-Valencia G, Hernández G (2014) Regulation of copper homeostasis and biotic interactions by microRNA 398b in common bean. PLoS One 9(1):e84416

    Article  PubMed  PubMed Central  Google Scholar 

  • Nie Z, Ren Z, Wang L, Su S, Wei X, Zhang X, Zhang S (2015) Genome-wide identification of microRNAs responding to early stages of phosphate deficiency in maize. Physiol Plant 157(2):161–174

    Article  Google Scholar 

  • Nuss ET, Tanumihardjo SA (2010) Maize: a paramount staple crop in the context of global nutrition. Compr Rev Food Sci Food Saf 9(4):417–436

    Article  CAS  Google Scholar 

  • Pant BD, Buhtz A, Kehr J, Scheible WR (2008) MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J 53(5):731–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pant BD, Musialak-Lange M, Nuc P, May P, Buhtz A, Kehr J, Scheible WR (2009) Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant Physiol 150(3):1541–1555

    Article  PubMed  PubMed Central  Google Scholar 

  • Pei L, Jin Z, Li K, Yin H, Wang J, Yang A (2013) Identification and comparative analysis of low phosphate tolerance-associated microRNAs in two maize genotypes. Plant Physiol Biochem 70:221–234

    Article  CAS  PubMed  Google Scholar 

  • Peragine A, Yoshikawa M, Wu G, Albrecht HL, Poethig RS (2004a) SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev 18(19):2368–2379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raghothama KG (1999) Phosphate acquisition. Annu Rev Plant Biol 50(1):665–693

    Article  CAS  Google Scholar 

  • Rausch C, Bucher M (2002) Molecular mechanisms of phosphate transport in plants. Planta 216(1):23–37

    Article  CAS  PubMed  Google Scholar 

  • Ren F, Guo QQ, Chang LL, Chen L, Zhao CZ, Zhong H, Li XB (2012) Brassica napus PHR1 gene encoding a MYB-like protein functions in response to phosphate starvation. PLoS One 7(8):e44005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez RE, Mecchia MA, Debernardi JM, Schommer C, Weigel D, Palatnik JF (2010) Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development 137(1):103–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers K, Chen X (2013) Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25(7):2383–2399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rouached H, Secco D, Arpat B, Poirier Y (2011) The transcription factor PHR1 plays a key role in the regulation of sulfate shoot-to-root flux upon phosphate starvation in Arabidopsis. BMC Plant Biol 11(1):19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubio V, Linhares F, Solano R, Martín AC, Iglesias J, Leyva A, Paz-Ares J (2001) A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev 15(16):2122–2133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz S, Grande AV, Bujdoso N, Saedler H, Huijser P (2008) The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Mol Biol 67(1–2):183–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen J, Yuan L, Zhang J, Li H, Bai Z, Chen X, Zhang F (2011) Phosphorus dynamics: from soil to plant. Plant Physiol 156(3):997–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stief A, Altmann S, Hoffmann K, Pant BD, Scheible WR, Bäurle I (2014) Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. Plant Cell 26(4):1792–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16(8):2001–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18(8):2051–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunkar R, Li YF, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17(4):196–203

    Article  CAS  PubMed  Google Scholar 

  • Supek F, Bošnjak M, Škunca N, Šmuc T (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 6(7):e21800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang W, Tang AY (2016) MicroRNAs associated with molecular mechanisms for plant root formation and growth. J For Res 27(1):1–12

    Article  CAS  Google Scholar 

  • Tollervey D, Kiss T (1997) Function and synthesis of small nucleolar RNAs. Curr Opin Cell Biol 9(3):337–342

    Article  CAS  PubMed  Google Scholar 

  • Torii KU (2004) Leucine-rich repeat receptor kinases in plants: structure, function, and signal transduction pathways. Int Rev Cytol 234:1–46

    Article  CAS  PubMed  Google Scholar 

  • Trindade I, Capitão C, Dalmay T, Fevereiro MP, Dos Santos DM (2010) miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula. Planta 231(3):705–716

    Article  CAS  PubMed  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157(3):423–447

    Article  CAS  Google Scholar 

  • Vaucheret H, Vazquez F, Crété P, Bartel DP (2004) The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev 18(10):1187–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vazquez F, Vaucheret H, Rajagopalan R, Lepers C, Gasciolli V, Mallory AC, Crété P (2004) Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell 16(1):69–79

    Article  CAS  PubMed  Google Scholar 

  • Vidal EA, Araus V, Lu C, Parry G, Green PJ, Coruzzi GM, Gutiérrez RA (2010) Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. Proc Natl Acad Sci 107(9):4477–4482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, C., Huang, W., Ying, Y., Li, S., Secco, D., Tyerman, S., & Shou, H. (2012). Functional characterization of the rice SPX-MFS family reveals a key role of OsSPX-MFS1 in controlling phosphate homeostasis in leaves. New Phytologist, 196(1), 139–148.

  • Wang JW, Schwab R, Czech B, Mica E, Weigel D (2008) Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. Plant Cell 20(5):1231–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wickham, H. (2009). ggplot2: elegant graphics for data analysis. Springer Science & Business Med

  • Xie K, Shen J, Hou X, Yao J, Li X, Xiao J, Xiong L (2012) Gradual increase of miR156 regulates temporal expression changes of numerous genes during leaf development in rice. Plant Physiol 158(3):1382–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu F, Liu Q, Chen L, Kuang J, Walk T, Wang J, Liao H (2013) Genome-wide identification of soybean microRNAs and their targets reveals their organ-specificity and responses to phosphate starvation. BMC Genomics 14(1):1

    Article  Google Scholar 

  • Yamasaki H, Abdel-Ghany SE, Cohu CM, Kobayashi Y, Shikanai T, Pilon M (2007) Regulation of copper homeostasis by micro-RNA in Arabidopsis. J Biol Chem 282(22):16369–16378

    Article  CAS  PubMed  Google Scholar 

  • Yi X, Zhang Z, Ling Y, Xu W, Su Z (2015) PNRD: a plant non-coding RNA database. Nucleic Acids Res 43(D1):D982–D989

    Article  PubMed  Google Scholar 

  • Yoshikawa M, Peragine A, Park MY, Poethig RS (2005) A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev 19(18):2164–2175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng H, Wang G, Zhang Y, Hu X, Pi E, Zhu Y, Du L (2016) Genome-wide identification of phosphate-deficiency-responsive genes in soybean roots by high-throughput sequencing. Plant Soil 398(1–2):207–227

    Article  CAS  Google Scholar 

  • Zhang C, Li G, Zhu S, Zhang S, Fang J (2013) tasiRNAdb: a database of ta-siRNA regulatory pathways. Bioinformatics 30(7):1045–1046

    Article  PubMed  Google Scholar 

  • Zhang L, Chia JM, Kumari S, Stein JC, Liu Z, Narechania A, Ware D (2009) A genome-wide characterization of microRNA genes in maize. PLoS Genet 5(11):e1000716

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao M, Tai H, Sun S, Zhang F, Xu Y, Li WX (2012) Cloning and characterization of maize miRNAs involved in responses to nitrogen deficiency. PLoS One 7(1):e29669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Jiao F, Wu Z, Li Y, Wang X, He X, Wu P (2008) OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol 146(4):1673–1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu YY, Zeng HQ, Dong CX, Yin XM, Shen QR, Yang ZM (2010) microRNA expression profiles associated with phosphorus deficiency in white lupin (Lupinus albus L.). Plant Sci 178(1):23–29

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Zhang J. and his group of Shandong University, China, providing their sequencing data (GEO Accession No. GSE70612) to carry out this study. Authors also acknowledge Mr. Rahul Semwal of Indian Institute of Information Technology, Allahabad, for his support to complete this work.

Author contributions

Performed the experiments and analysis: SG and MK; designed experiments: SG, MK, and PKV; wrote paper: SG, HK, and PKV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pritish Kumar Varadwaj.

Ethics declarations

This research does not perform any experiment on human and animals. All data used in this in silico work collected from the open sources. Hence, authors declare that there is no compliance with ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Funding information

This study was not supported by any funding agency.

Additional information

This article forms part of a special issue of Functional & Integrative Genomics entitled “miRNA in model and complex organisms” (Issue Editors: Hikmet Budak and Baohong Zhang).

Saurabh Gupta and Manju Kumari contributed equally in this work.

Electronic supplementary material

Fig S1

(DOCX 410 kb)

Fig S2

(DOCX 50 kb)

ESM 1

(XLSX 27476 kb)

ESM 2

(XLSX 4167 kb)

ESM 3

(XLSX 1384 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Kumari, M., Kumar, H. et al. Genome-wide analysis of miRNAs and Tasi-RNAs in Zea mays in response to phosphate deficiency. Funct Integr Genomics 17, 335–351 (2017). https://doi.org/10.1007/s10142-016-0538-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-016-0538-4

Keywords

Navigation