Skip to main content
Log in

Migration of endophytic diazotroph Azorhizobium caulinodans ORS571 inside wheat (Triticum aestivum L) and its effect on microRNAs

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Azorhizobium caulinodans ORS571, a novel rhizobium, forms endosymbionts with its nature host Sesbania rostrata, a semi-aquatic leguminous tree. Recent studies showed that A. caulinodans ORS571, as endophytic rhizobium, disseminated and colonized inside of cereal plants. However, how this rhizobium infects monocot plants and the regulatory mechanism remains unknown. MicroRNAs (miRNAs) are small, endogenous RNAs that regulate gene expression at the post-transcriptional levels. In this study, we employed laser scanning confocal microscope to monitor the pathway that rhizobium invade wheat; we also investigated the potential role of miRNAs during A. caulinodans ORS571 infecting wheat. Our results showed that gfp-labeled A. caulinodans ORS571 infected wheat root hairs and emerged lateral roots, then disseminated and colonized within roots and migrated to other plant tissues, such as stems and leaves. Endophytic rhizobium induced the aberrant expression of miRNAs in wheat with a tissue- and time-dependent manner with a peak at 12–24 h after rhizobium infection. Some miRNAs, such as miR167 and miR393 responded more in roots than that in shoots. In contrast, miR171 responded higher in shoots than that in roots. These results suggested that miRNAs could be responsive to A. caulinodans ORS571 infection and played important role in plant growth, nutrient metabolisms, and wheat-rhizobium interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alptekin B, Langridge P, Budak H (2016) Abiotic stress miRNomes in the Triticeae. Funct Integr Genomics doi:10.1007/s10142-016-0525-9

  • Bari R, Datt Pant B, Stitt M, Scheible WR (2006) PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol 141:988–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bian H, Xie Y, Guo F, Han N, Ma S, Zeng Z, Wang J, Yang Y, Zhu M (2012) Distinctive expression patterns and roles of the miRNA393/TIR1 homolog module in regulating flag leaf inclination and primary and crown root growth in rice (Oryza sativa). New Phytol 196:149–161

    Article  CAS  PubMed  Google Scholar 

  • Budak H, Akpinar BA (2015) Plant miRNAs: biogenesis, organization and origins. Funct Integr Genomics 15:523–531

    Article  CAS  PubMed  Google Scholar 

  • Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301:336–338

    Article  CAS  PubMed  Google Scholar 

  • Chang C, Damiani I, Puppo A, Frendo P (2009) Redox changes during the legume–Rhizobium symbiosis. Mol Plant 2:370–377

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Ren Y, Zhang Y, Xu J, Zhang Z, Wang Y (2012) Genome-wide profiling of novel and conserved Populus microRNAs involved in pathogen stress response by deep sequencing. Planta 235:873–883

    Article  CAS  PubMed  Google Scholar 

  • Chen X (2009) Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol 25:21–44

    Article  PubMed  PubMed Central  Google Scholar 

  • Chi F, Shen SH, Cheng HP, Jing YX, Yanni YG, Dazzo FB (2005) Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl Environ Microb 71:7271–7278

    Article  CAS  Google Scholar 

  • Chiou TJ (2007) The role of microRNAs in sensing nutrient stress. Plant Cell Environ 30:323–332

    Article  CAS  PubMed  Google Scholar 

  • Damiani I, Pauly N, Puppo A, Brouquisse R, Boscari A (2016) Reactive oxygen species and nitric oxide control early steps of the legume–rhizobium symbiotic interaction. Front Plant Sci 7:454

    PubMed  PubMed Central  Google Scholar 

  • D’Haeze W, Gao M, De Rycke R, Montagu MV, Engler G, Holsters M (1998) Roles for azorhizobial Nod factors and surface polysaccharides in intercellular invasion and nodule penetration, respectively. Mol Plant Microbe In 11:999–1008

    Article  Google Scholar 

  • D’Haeze W, De Rycke R, Mathis R, Goormachtig S, Pagnotta S, Verplancke C, Capoen W, Holsters M (2003) Reactive oxygen species and ethylene play a positive role in lateral root base nodulation of a semiaquatic legume. Proc Natl Acad Sci USA 100:11789–11794

    Article  PubMed  PubMed Central  Google Scholar 

  • Dreyfus B, Garcia JL, Gillis M (1988) Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int J Syst Evol Microbiol 38:89–98

    CAS  Google Scholar 

  • Feng H, Duan X, Zhang Q, Li X, Wang B, Huang L, Wang X, Kang Z (2014) The target gene of tae-miR164, a novel NAC transcription factor from the NAM subfamily, negatively regulates resistance of wheat to stripe rust. Mol Plant Pathol 15:284–296

    Article  CAS  PubMed  Google Scholar 

  • Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK (2005) A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol 15:2038–2043

    Article  CAS  PubMed  Google Scholar 

  • Goormachtig S, Capoen W, Holsters M (2004a) Rhizobium infection: lessons from the versatile nodulation behaviour of water-tolerant legumes. Trends Plant Sci 9:518–522

  • Goormachtig S. Capoen W, James EK, Holsters M (2004b) Switch from intracellular to intercellular invasion during water stress-tolerant legume nodulation. Proc Natl Acad Sci USA 101:6303–6308

  • Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agr 2:1127500

  • Grobelak A, Napora A, Kacprzak M (2015) Using plant growth-promoting rhizobacteria (PGPR) to improve plant growth. Ecol Eng 84:22–28

    Article  Google Scholar 

  • Guo HS, Xie Q, Fei JF, Chua NH (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell 17:1376–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7:96–102

    Google Scholar 

  • Hackenberg M, Shi BJ, Gustafson P, Langridge P (2013) Characterization of phosphorus-regulated miR399 and miR827 and their isomirs in barley under phosphorus-sufficient and phosphorus-deficient conditions. BMC Plant Biol 13:214

    Article  PubMed  PubMed Central  Google Scholar 

  • Jagadeeswaran G, Saini A, Sunkar R (2009) Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta 229:1009–1014

    Article  CAS  PubMed  Google Scholar 

  • Ji KX, Chi F, Yang MF, Shen SH, Jing YX, Dazzo FB, Cheng HP (2010) Movement of rhizobia inside tobacco and lifestyle alternation from endophytes to free-living rhizobia on leaves. J Microbiol Biotechnol 20:238–244

    Article  PubMed  Google Scholar 

  • Li C, Zhang B (2016) MicroRNAs in control of plant development. J Cell Physiol 231:303–313

    Article  CAS  PubMed  Google Scholar 

  • Liang G, He H, Yu D (2012) Identification of nitrogen starvation-responsive microRNAs in Arabidopsis thaliana. PLoS One 7:e48951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin SI, Chiang SF, Lin WY, Chen JW, Tseng CY, Wu PC, Chiou TJ (2008) Regulatory network of microRNA399 and PHO2 by systemic signaling. Plant Physiol 147:732–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu HW, Sun C, Yang H, Lin XJ, Guo AG (2012) Promotion for wheat growth and root colonization after infecting wheat seeds with Azorhizobium caulinodans. Plant Nutr Fert Sci 18:210–217 (in Chinese)

  • Liu HW, Lin XJ, Sun C, Li Q, Yang H, Guo AG (2013) Inoculation two azotobacter enhancing osmotic stress resistance and growth in wheat seedling. Chin J Plant Ecol 37:70–79 (in Chinese)

  • Liu JQ, AllanD L, Vance CP (2010) Systemic signaling and local sensing of phosphate in common bean: cross-talk between photosynthate and microRNA399. Mol Plant 3:428–437

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Chen SF, Li JL (2003) Colonization pattern of Azospirillum brasilense Yu62 on maize roots. Acta Bot Sin 45:748–752

    Google Scholar 

  • Mallory AC, Vaucheret H (2006) Functions of microRNAs and related small RNAs in plants. Nat Genet 38:S31–S36

    Article  CAS  PubMed  Google Scholar 

  • Mantri N, Basker N, Ford R, Pang E, Pardeshi V (2013) The role of micro-ribonucleic acids in legumes with a focus on abiotic stress response. Plant Genome 6:1–14

  • McCully ME (2001) Niches for bacterial endophytes in crop plants: a plant biologist’s view. Aust J Plant Physiol 28:983–990

    Google Scholar 

  • Meng Y, Ma X, Chen D, Wu P, Chen M (2010) MicroRNA-mediated signaling involved in plant root development. Biochem Biophys Res Commun 393:345–349

    Article  CAS  PubMed  Google Scholar 

  • Montiel J, Arthikala MK, Cárdenas L, Quinto C (2016) Legume NADPH oxidases have crucial roles at different stages of nodulation. Int J Mol Sci 17:680

    Article  PubMed Central  Google Scholar 

  • Millar AA, Waterhouse PM (2005) Plant and animal microRNAs: similarities and differences. Funct Integr Genomics 5:129–135

    Article  CAS  PubMed  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    Article  CAS  PubMed  Google Scholar 

  • Nikovics K, Blein T, Peaucelle A, Ishida T, Morin H, Aida M, Laufs P (2006) The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. Plant Cell 18:2929–2945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nozawa M, Miura S, Nei M (2012) Origins and evolution of microRNA genes in plant species. Genome Biol Evol 4:230–239

    Article  PubMed  PubMed Central  Google Scholar 

  • Peix A, Rivas-Boyero AA, Mateos PF, Rodriguez-Barrueco C, Martinez-Molina E, Velazquez E (2001) Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol Biochem 33:103–110

    Article  CAS  Google Scholar 

  • Pluskota WE, Martínez-Andújar C, Martin RC, Nonogaki H (2011) MicroRNA function in seed biology, in non coding RNAs in plants. Springer 339–357

  • Rajwanshi R, Chakraborty S, Jayanandi K, Deb B, Lightfoot DA (2014) Orthologous plant microRNAs: microregulators with great potential for improving stress tolerance in plants. Theor Appl Genet 127:2525–2543

    Article  CAS  PubMed  Google Scholar 

  • Santos R, Hérouart D, Sigaud S, Touati D, Puppo A (2001) Oxidative burst in alfalfa-Sinorhizobium meliloti symbiotic interaction. Mol Plant Microbe In 14:86–89

    Article  CAS  Google Scholar 

  • Shukla LI, Chinnusamy V, Sunkar R (2008) The role of microRNAs and other endogenous small RNAs in plant stress responses. BBA-Gene Regul Mech 1779:743–748

    CAS  Google Scholar 

  • Sieber P, Wellmer F, Gheyselinck J, Riechmann JL, Meyerowitz EM (2007) Redundancy and specialization among plant microRNAs: role of the MIR164 family in developmental robustness. Development 134:1051–1060

    Article  CAS  PubMed  Google Scholar 

  • Soto MJ, Sanjuán J, Olivares J (2006) Rhizobia and plant-pathogenic bacteria: common infection weapons. Microbiology 152:3167–3174

    Article  CAS  PubMed  Google Scholar 

  • Subramanian S, Fu Y, Sunkar R, Barbazuk WB, Zhu JK, Yu O (2008) Novel and nodulation-regulated microRNAs in soybean roots. BMC Genomics 9:160

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 20:759–771

    Article  CAS  PubMed  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Wang WX, Gaffney B, Hunt AG, Tang G (2007) MicroRNAs (miRNAs) and plant development. eLS

  • Xia K, Wang R, Ou X, Fang Z, Tian C, Duan J, Wang Y, Zhang M (2012) OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PLoS One 7:e30039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin M, Wang Y, Yao Y, Xie C, Peng H, Ni Z, Sun Q (2010) Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biol 10:123

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang BH (2015) MicroRNA: a new target for improving plant tolerance to abiotic stress. J Exp Bot 66:1749–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang BH, Pan XP, Cobb GP, Anderson TA (2006a) Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289:3–16

    Article  CAS  PubMed  Google Scholar 

  • Zhang BH, Pan XP, Cox SB, Cobb GP, Anderson TA (2006b) Evidence that miRNAs are different from other RNAs. Cell Mol Life Sci 63:246–254

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Xian Z, Huang W, Li Z (2015) Evidence for the biological function of miR403 in tomato development. Sci Hortic 197:619–626

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Yuxiang Jing for presenting the gfp-A. caulinodans ORS571. This work was partially supported by the Agricultural Key Science and Technology Program of Shaanxi Province (2015NY006), the International Cooperation and Exchanges Project of Shaanxi Province (2015KW-028), and the National Natural Science Foundation of China (31071870, 30700489).

Authors’ contributions

HL and BZ were the principal investigators and took primary responsibility for the paper. HL, BZ, and LQ conceived and designed the experiments. LQ, QL, JZ, YC, XL, CS, and WW performed the experiments. LQ, QL, JZ, and YC analyzed the data. HL, BZ, QL, JZ, and YC wrote the paper and prepared figures. All the authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huawei Liu or Baohong Zhang.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

This article forms part of a special issue of Functional and Integrative Genomics entitled “miRNA in model and complex organisms” (Issue Editors: Hikmet Budak and Baohong Zhang)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, L., Li, Q., Zhang, J. et al. Migration of endophytic diazotroph Azorhizobium caulinodans ORS571 inside wheat (Triticum aestivum L) and its effect on microRNAs. Funct Integr Genomics 17, 311–319 (2017). https://doi.org/10.1007/s10142-016-0534-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-016-0534-8

Keywords

Navigation