Skip to main content
Log in

Alr2954 of Anabaena sp. PCC 7120 with ADP-ribose pyrophosphatase activity bestows abiotic stress tolerance in Escherichia coli

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

In silico derived properties on experimental validation revealed that hypothetical protein Alr2954 of Anabaena sp. PCC7120 is ADP-ribose pyrophosphatase, which belongs to nudix hydrolase superfamily. Presence of ADP-ribose binding site was attested by ADP-ribose pyrophosphatase activity (K m 44.71 ± 8.043 mM, V max 7.128 ± 0.417 μmol min−1 mg protein−1, and K cat/K m 9.438 × 104 μM1 min−1). Besides ADP-ribose, the enzyme efficiently hydrolyzed various nucleoside phosphatases such as 8-oxo-dGDP, 8-oxo-dADP, 8-oxo-dGTP, 8-oxo-dATP, GDP-mannose, ADP-glucose, and NADH. qRT-PCR analysis of alr2954 showed significant expression under different abiotic stresses reconfirming its role in stress tolerance. Thus, Alr2954 qualifies to be a member of nudix hydrolase superfamily, which serves as ADP-ribose pyrophosphatase and assists in multiple abiotic stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agrawal C, Sen S, Yadav S, Rai S, Rai LC (2015) A novel aldo-keto reductase (AKR17A1) of Anabaena sp. PCC 7120 degrades the rice field herbicide butachlor and confers tolerance to abiotic stresses in E. coli. PLoS One 10(9):e0137744. doi:10.1371/journal.pone.0137744

    Article  PubMed  PubMed Central  Google Scholar 

  • Apte SK (2001) Coping with salinity/water stress: cyanobacteria show the way. Proc Indian Natl Sci Acad 5:285–310. doi:10.1007/BF01577340

    Google Scholar 

  • Apte SK, Bhagwat AA (1989) Salinity-stress-induced proteins in two nitrogen-fixing Anabaena strains differentially tolerant to salt. J Bacteriol 171:909–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arimori T, Tamaoki H, NakamuraT KH, Ikemizu S, Takagi Y, Ishibashi T, Harashima H, Sekiguchi M, Yamagata Y (2011) Diverse substrate recognition and hydrolysis mechanisms of human NUDT5. Nucleic Acids Res 39:8972–8983. doi:10.1093/nar/gkr575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modeling. Bioinformatics 22:195–201. doi:10.1093/bioinformatics/bti770

    Article  CAS  PubMed  Google Scholar 

  • Bektas M, Akcakaya H, Aroymak A, Nurten R, Bermek E (2005) Effect of oxidative stress on in vivo ADP-ribosylation of eukaryotic elongation factor-2. Int J Biochem Cell Biol 37:91–99. doi:10.1016/j.biocel.2004.05.016

    Article  CAS  PubMed  Google Scholar 

  • Bessman MJ, Walsh JD, Dunn CA, Swaminathan J, Weldon JE, Shen J (2001) The gene ygdP, associated with the invasiveness of Escherichia coli K12, designates a nudix hydrolase, Orf176, active on adenosine (5′)-Pentaphospho-(5′)-adenosine (Ap5A). J Biol Chem 276:37834–37838. doi:10.1074/jbc.M107032200

    CAS  PubMed  Google Scholar 

  • Bhargava P, Mishra Y, Srivastava AK, Narayan OP, Rai LC (2008) Excess copper induces anoxygenic photosynthesis in Anabaena doliolum: a homology based proteomic assessment of its survival strategy. Photosynth Res 96:61–74

    Article  CAS  PubMed  Google Scholar 

  • Canales J, Pinto RM, Costas MJ, Hernndez MT, Miro A, Bernet D, Fernández A, Cameselle JC (1995) Rat liver nucleoside diphospho sugar or diphospho alcohol pyrophosphatases different from nucleotide pyrophosphatase or phosphodiesterase I: substrate specificities of Mg2+ and/or Mn2+ dependent hydrolases acting on ADP-ribose. Biochem Biophys Acta 1246:167–177

    PubMed  Google Scholar 

  • Cartwright JL, Gasmi L, Spiller DG, McLennan AG (2000) The Saccharomyces cerevisiae PCD1 gene encodes a peroxisomal nudix hydrolase active toward coenzyme A and its derivatives. J Biol Chem 275:32925–32930. doi:10.1074/jbc.M005015200

    Article  CAS  PubMed  Google Scholar 

  • Dobrzanska M, Szurmak B, Wyslouch-Cieszynska A, Kraszewska E (2002) Cloning and characterization of the first member of the nudix family from Arabidopsis thaliana. J Biol Chem 277:50482–50486. doi:10.1074/jbc.M205207200

    Article  CAS  PubMed  Google Scholar 

  • Dunn CA, O’Handley SF, Frick DN, Bessman MJ (1999) Studies on the ADP-ribose pyrophosphatase subfamily of the nudix hydrolases and tentative identification of trgB, a gene associated with tellurite resistance. J Biol Chem 274:32318–32324. doi:10.1074/jbc.274.45.32318

    Article  CAS  PubMed  Google Scholar 

  • Frick DN, Bessman MJ (1995) Cloning, purification, and properties of a novel NADH pyrophosphatase evidence for a nucleotide pyrophosphatase catalytic domain in MutT-like enzymes. J Biol Chem 270:1529–1534. doi:10.1074/jbc.270.4.1529

    Article  CAS  PubMed  Google Scholar 

  • Gabelli SB, Bianchet MA, Bessman MJ, Amzel LM (2001) The structure of ADP-ribose pyrophosphatase reveals the structural basis for the versatility of the nudix family. Nature Struct Biol 8:467–472. doi:10.1038/87647

    Article  CAS  PubMed  Google Scholar 

  • Gabelli SB, Mario BA, Ohnishi Y, Ichikawa Y, Bessman MJ, Amzel LM (2002) Mechanism of the Escherichia coli ADP-ribose pyrophosphatase, a nudix hydrolase. Biochemistry 41:9279–9285. doi:10.1021/bi0259296

    Article  CAS  PubMed  Google Scholar 

  • Gasmi L, Cartwright JL, McLennan AG (1999) Cloning, expression and characterization of YSA1H, a human adenosine 50-diphosphosugar pyrophosphatase possessing a MutT motif. J Biochem 344:331–337. doi:10.1042/0264-6021:3440331

    Article  CAS  Google Scholar 

  • Gasteiger E, Hoogland C,Gattiker A, Duvaud S,WilkinsMR,Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In:Walker JM (ed) The proteomics protocols handbook. Humana Press, pp. 571-607

  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-Pdb viewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723. doi:10.1002/elps.1150181505

    Article  CAS  PubMed  Google Scholar 

  • Higo A, Ikeuchi M, Ohmori M (2008) cAMP regulates respiration and oxidative stress during rehydration in Anabaena sp. PCC 7120. FEBS Lett 582:1883–1888. doi:10.1016/j.febslet.2008.05.007

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Cao H, Niu Y, Dai S (2012) Expression analysis of nudix hydrolase genes in Chrysanthemum lavandulifolium. Plant Mol Biol Rep 30:973–982. doi:10.1007/s11105-011-0401-7

    Article  CAS  Google Scholar 

  • Hunt L, Lerner F, Ziegler M (2004) NAD—new roles in signaling and gene regulation in plants. New Phytol 163:31–44. doi:10.1111/j.1469-8137.2004.01087.x

    Article  CAS  Google Scholar 

  • Ikai A (1980) Thermostability and aliphatic index of globular proteins. J Biochem 88:1895–1898

  • Imlay JA (2002) How oxygen damages microbes: oxygen tolerance and obligate anaerobiosis. Adv Microb Physiol 46:111–153. doi:10.1016/S0065-2911(02)46003-1

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa K, Ogawa T, Hirosue E, NakayamaY HK, Fukusaki E, Yoshimura K, Shigeoka S (2009) Modulation of the poly (ADP-ribosyl) ation reaction via the Arabidopsis ADP-ribose/NADH pyrophospho hydrolase, AtNUDX7, is involved in the response to oxidative stress. Plant Physiol 151:741–754. doi:10.1104/pp.109.140442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa K, Yoshimura K, OgawaT SS (2010) Distinct regulation of Arabidopsis ADP-ribose/NADH pyrophosphohydrolases, AtNUDX6 and 7, in biotic and abiotic stress responses. Plant Signal Behav 5:839–841. doi:10.1104/pp.109.140442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jambunathan N, Mahalingam R (2006) Analysis of Arabidopsis growth factor gene 1 (GFG1) encoding a nudix hydrolase during oxidative signaling. Planta 224:1–11. doi:10.1007/s00425-005-0183-y

    Article  CAS  PubMed  Google Scholar 

  • Kakuma T, Nishida J, Tsuzuki T, Sekiguchi M (1995) Mouse MTH1 protein with 8-oxo-7,8-dihydro-29-deoxiguanosine 59-triphosphatase activity that prevents transversion mutation. J Biol Chem 270:25942–25948. doi:10.1074/jbc.270.43.25942

    Article  CAS  PubMed  Google Scholar 

  • Kang LW, Gabelli SB, Cunningham JE, O’Handley SF, Amzel LM (2003) Structure and mechanism of MT-ADPRase, a nudix hydrolase from Mycobacterium tuberculosis. Structure 11:1015–1023. doi:10.1016/S0969-2126(03)00154-0

    Article  CAS  PubMed  Google Scholar 

  • Kolisek M, Beck A, Fleig A, Penner R (2005) Cyclic ADP-ribose and hydrogen peroxide synergize with ADP-ribose in the activation of TRPM2 channels. Mol Cell 18:61–69. doi:10.1016/j.molcel.2005.02.033

    Article  CAS  PubMed  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JDG, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633. doi:10.1093/emboj/cdg277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–486. doi:10.1007/BF00228148

    Article  CAS  PubMed  Google Scholar 

  • Laurie AT, Jackson RM (2005) Q-Site Finder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics 21:1908–1916. doi:10.1093/bioinformatics/bti315

    Article  CAS  PubMed  Google Scholar 

  • Lessel U, Schomburg D (1994) Similarities between protein 3-D structures. Protein Eng 7:1175–1187. doi:10.1093/nar/gkg571

    Article  CAS  PubMed  Google Scholar 

  • Maki H, Sekiguchi M (1992) MutT protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis. Nature 355:273–275. doi:10.1038/355273a0

    Article  CAS  PubMed  Google Scholar 

  • Marchler-Bauer A, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Lu S, Marchler GH, Mullokandov M, Song JS, Tasneem A, Thanki N, Yamashita RA, Zhang D, Zhang N, Bryant SH (2011) CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39:225–229. doi:10.1093/nar/gkq1189

    Article  Google Scholar 

  • Maruta T, Yoshimoto T, Ito D, Ogawa T, Tamoi M, Yoshimura K, Shigeoka S (2012) An Arabidopsis FAD pyrophosphohydrolase, AtNUDX23, is involved in flavin homeostasis. Plant Cell Physiol 53:1106–1116. doi:10.1093/pcp/pcs054

    Article  CAS  PubMed  Google Scholar 

  • Mishra Y, Chaurasia N, Rai LC (2009) Heat pretreatment alleviates UV-B toxicity in the cyanobacterium Anabaena doliolum: a proteomic an analysis of cross tolerance. J. Photochem Photobiol 85:824–833. doi:10.1111/j.1751-1097.2008.00469

    Article  CAS  PubMed  Google Scholar 

  • Narayan OP, Kumari N, Rai LC (2011) Iron starvation-induced proteomic changes in Anabaena (Nostoc) sp. PCC 7120: exploring survival strategy. J Microbiol Biotechnol 21:136–146. doi:10.4014/jmb.1009.09021

    Article  CAS  PubMed  Google Scholar 

  • O’Handley SF, Frick DN, Dunn CA, Bessman MJ (1998) Orf186 represents a new member of the nudix hydrolases, active on adenosine(5)triphospho(5) adenosine, ADP-ribose, and NADH. J Biol Chem 273:3192–3197. doi:10.1074/jbc.273.6.3192

    Article  PubMed  Google Scholar 

  • Ogawa T, Ishikawa K, Harada K, Fukusaki E, Yoshimura K, Shigeoka S (2009) Overexpression of an ADP-ribose pyrophosphatase, AtNUDX2, confers enhanced tolerance to oxidative stress in Arabidopsis plants. Plant J 57:289–301. doi:10.1111/j.1365-313X.2008.03686

    Article  CAS  PubMed  Google Scholar 

  • Okuda K, Nishiyama Y, Morita EH, Hayashi H (2004) Identification and characterization of NuhA, a novel Nudix hydrolase specific for ADP-ribose in the cyanobacterium Synechococcus sp. PCC 7002. Biochim Biophys Acta 1699:245–252. doi:10.1016/j.bbapap.2004.03.004

    Article  CAS  PubMed  Google Scholar 

  • Padhy RN, Mohapatra K (2001) Toxicity of two carbamate insecticides to the cyanobacterium Anabaena PCC 7120 and computations of partial lethal concentrations by the probit method. Microbiol 106:81–95

    CAS  Google Scholar 

  • Pandey S, Rai R, Rai LC (2012) Proteomics combines morphological, physiological and biochemical attributes to unravel the survival strategy of Anabaena sp. PCC 7120 under arsenic stress. J Proteomics 75:921–937. doi:10.1016/j.jprot.2011.10.011

    Article  CAS  PubMed  Google Scholar 

  • Raffaelli NT, Lorenzi A, Amici M, Emanuelli S, Ruggieri MG (1999) Synechocystits sp. slr0787 protein is novel bifunctional enzyme endowed with both nicotinamide mononucleotide adenylyl transferase and ‘Nudix’ hydrolase activities. FEBS Lett 444:222–226. doi:10.1128/JB.187.14.4984-4991.2005

    Article  CAS  PubMed  Google Scholar 

  • Rai S, Agrawal C, Shrivastava AK, Singh PK, Rai LC (2014) Comparative proteomics unveils cross species variations in Anabaena under salt stress. J Proteomics 98:254–270. doi:10.1016/j.jprot.2013.12.020

    Article  CAS  PubMed  Google Scholar 

  • Rajaram H, Apte S K (2008). Nitrogen status and heat-stress dependent differential expression of the cpn60 chaperonin gene influences thermotolerance in the cyanobacterium Anabaena. Microbiology 154:317–325

  • Ribeiro JM, Carloto A, Costas MJ, Cameselle JC (2001) Human placenta hydrolases active on free ADP-ribose: an ADP-sugar pyrophosphatase and a specific ADP-ribose pyrophosphatase. Biochim Biophys Acta 1526: 86–94

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

  • Roxas VP, Lodhi SA, Garrett DK, Mahan JR, Allen RD (2000) Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant Cell Physiol 41:1229–1234. doi:10.1093/pcp/pcd051

    Article  CAS  PubMed  Google Scholar 

  • Safrany ST, Caffrey JJ, Yang X, Bembenek ME, Moyer MB, Burkhart WA, Shears SB (1998) A novel context for the ‘MutT’ module, a guardian of cell integrity, in a diphospho-inositol polyphosphate phosphohydrolase. EMBO J 17:6599–6607. doi:10.1093/emboj/17.22.6599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sheikh S, O’Handley SF, Dunn CA, Bessman MJ (1998) Identification and characterization of the nudix hydrolase from the archaeon, Methanococcus jannaschii, as a highly specific ADP-ribose pyrophosphatase. J Biol Chem 273:20924–20928. doi:10.1074/jbc.273.33.20924

    Article  CAS  PubMed  Google Scholar 

  • Shen BW, Perraud AL, Scharenberg A, Stoddard BL (2003) The crystal structure and mutational analysis of human NUDT9. J Mol Biol 332:385–398. doi:10.1016/S0022-2836(03)00954-9

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava AK, Chatterjee A, Yadav S, Singh PK, Singh S, Rai LC (2015) UV-B stress induced metabolic rearrangements explored with comparative proteomics in three Anabaena species. J Proteomics 127:122–133. doi:10.1007/s10142-014-0407-y

    Article  CAS  PubMed  Google Scholar 

  • Singh PK, Shrivastava AK, Chatterjee A, Pandey S, Rai S, Singh S, Rai LC (2015) Cadmium toxicity in diazotrophic Anabaena spp. adjudged by hasty up-accumulation of transporter and signaling and severe down-accumulation of nitrogen metabolism proteins. J Proteomics 127:134–146. doi:10.1016/j.jprot.2015.05.019

    Article  CAS  PubMed  Google Scholar 

  • Takahara K, Kasajima I, Takahashi H, Hashida SN, Itami T, Onodera H, Toki S, Yanagisawa S, Kawai-Yamada M, Uchimiya H (2010) Metabolome and photochemical analysis of rice plants overexpressing Arabidopsis NAD kinase gene. Plant Physiol 152: 1863–1873

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka T, Yamamoto D, Sato T, Tanaka S, Usui K, Manabe M, Aoki Y, Iwashima Y, Saito Y, Mino Y, Deguchi H (2011) Adenosine thiamine triphosphate (AThTP) inhibits poly (ADP-ribose) polymerase-1 (PARP-1) activity. J Nutr Sci Vitaminol 57(2):192-196

  • Tassotto ML, Mathews CK (2002) Comprehensive analysis of cytosolic nudix hydrolases in Arabidopsis thaliana. J Biol Chem 277:15807–15812. doi:10.1074/jbc.M200965200

    Article  CAS  PubMed  Google Scholar 

  • Vaishampayan A, Sinha RP, Hader DP, Dey T, Gupta AK, Bhan U, Rao AL (2001) Cyanobacterial biofertilizers in rice agriculture. Botanical Rev 67:453–516. doi:10.1007/BF02857893

    Article  Google Scholar 

  • Wakamatsu T, Nakagawa N, Kuramitsu S, Masui R (2008) Structural basis for different substrate specificities of two ADP-ribose pyrophosphatases from Thermus thermophilus HB8. J Bacteriol 190:1108–1117. doi:10.1128/JB.01522-07

    Article  CAS  PubMed  Google Scholar 

  • Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35(Web Server issue):W407–W410. doi:10.1093/nar/gkm290

    Article  PubMed  PubMed Central  Google Scholar 

  • Yagi T, Baroja-Fernandez E, Yamamoto R, Muñoz FJ, Akazawa T, Hong KS, Pozueta-Romero J (2003) Cloning, expression and characterization of a mammalian nudix hydrolase-like enzyme that cleaves the pyrophosphate bond of UDP-glucose. Biochem J 370:409–415. doi:10.1042/BJ20021140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Slupska MM, Wei YF, Tai JH, Luther WM, Xia YR, Shih MD, Chiang JH, Baikalov C, Gibbon SF, Phan IT, Conrad A, Miller JH (2000) Cloning and characterization of a new member of the nudix hydrolases from human and mouse. J Biol Chem 275(12):8844–8853

    Article  CAS  PubMed  Google Scholar 

  • Yoshiba S, Ooga T, Nakagawa N, Inouell T, Yokoyama S, Kuramitsu S, Masui R (2004) Structural insights into the Thermus thermophilus ADP-ribose pyrophosphatase mechanism via crystal structures with the bound substrate and metal. J Biol Chem 279:37163–37174. doi:10.1074/jbc.M403817200

    Article  CAS  PubMed  Google Scholar 

  • Zeng X, Li YF, Mahalingam R (2014) Arabidopsis nudix hydrolase-7 plays a role in seed germination. Planta 239:1015–1025. doi:10.1007/s00425-014-2035-0

    Article  CAS  PubMed  Google Scholar 

  • Zha M, Zhong C, Peng Y, Hu H, Ding J (2006) Crystal structures of human NUDT5 reveals insights into the structural basis of the substrate specificity. J Mol Biol 364:1021–1033. doi:10.1016/j.jmb.2006.09.078

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

L.C. Rai is thankful to the CSIR, ICAR, DST for J.C. Bose National Fellowship and DAE for Raja Ramanna Fellowship. Alok Kumar Shrivastava is thankful to SERB New Delhi for Young Scientist award. Antra Chatterjee to the UGC, New Delhi, for JRF. Shilpi Singh and Ruchi Rai to DST for WOSA award. We thank the Head Botany and the Programe coordinator Centre of Advanced Study in Botany for facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. C. Rai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 113492 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P.K., Shrivastava, A.K., Singh, S. et al. Alr2954 of Anabaena sp. PCC 7120 with ADP-ribose pyrophosphatase activity bestows abiotic stress tolerance in Escherichia coli . Funct Integr Genomics 17, 39–52 (2017). https://doi.org/10.1007/s10142-016-0531-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-016-0531-y

Keywords

Navigation