Skip to main content

Advertisement

Log in

An analysis of the validity and utility of the proximon proposition

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

The utilization of metagenomic functional interactions represents a key technique for metagenomic functional annotation efforts. By definition, metagenomic operons represent such interactions, but many operon predictions protocols rely on information about orthology and/or gene function that is frequently unavailable for metagenomic genes. Recently, the concept of the metagenomic proximon was proposed for use in metagenomic scenarios where supplemental information is sparse. In this paper, we examine the validity and utility of the proximon proposition by measuring the extent to which proximons emulate actual operons. Using the Escherichia coli K-12 genome, we compare proximons and operons from the same genome and observe the configurations and cardinalities among their corresponding mappings. The results demonstrate that the vast majority of proximons map discretely to a single operon in a conservative fashion where a typical proximon is synonymous to an equivalent or truncated operon. However, a large proportion of operons had no corresponding mappings to any proximon. Various perspectives of operon and proximon intersection are discussed, along with the potential limitations for proximon detection and usage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Aravind L (2000) Guilt by association: contextual information in genome analysis. Genome Res 10:1074–1077

    Article  CAS  PubMed  Google Scholar 

  • De Filippo C, Ramazzotti M, Fontana P, Cavalieri D (2012) Bioinformatic approaches for functional annotation and pathway inference in metagenomics data. Brief Bioinform 13:696–710

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356

    Article  CAS  PubMed  Google Scholar 

  • Janga SC, Moreno-Hagelsieb G (2004) Conservation of adjacency as evidence of paralogous operons. Nucleic Acids Res 32:5392–5397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kagan J, Sharon I, Beja O, Kuhn JC (2008) The tryptophan pathway genes of the Sargasso Sea metagenome: new operon structures and the prevalence of non-operon organization. Genome Biol 9(1):R20

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu B, Pop M (2011) MetaPath: identifying differentially abundant metabolic pathways in metagenomic datasets. BMC Proc 5:S9

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller JH, Reznikoff WS (1978) The operon. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Moreno-Hagelsieb G, Collado-Vides J (2002a) A powerful non-homology method for the prediction of operons in prokaryotes. Bioinformatics 18:S329–336

    Article  PubMed  Google Scholar 

  • Moreno-Hagelsieb G, Collado-Vides J (2002b) Operon conservation from the point of view of Escherichia coli, and inference of functional interdependence of gene products from genome context. In Silico Biol 2:87–95

    CAS  PubMed  Google Scholar 

  • Moreno-Hagelsieb G, Janga SC (2008) Operons and the effect of genome redundancy in deciphering functional relationships using phylogenetic profiles. Proteins 70:344–352

    Article  CAS  PubMed  Google Scholar 

  • National Center for Biotechnology Information (2014) FTP directory of bacterial genomes. ftp://ftp.ncbi.nih.gov/genomes/Bacteria/

  • Oliver S (2000) Guilt-by-association goes global. Nature 403:601–603

    Article  CAS  PubMed  Google Scholar 

  • Rhee SY, Mutwil M (2014) Towards revealing the functions of all genes in plants. Trends Plant Sci 19:212–221

    Article  CAS  PubMed  Google Scholar 

  • Salgado H, Moreno-Hagelsieb G, Smith TF, Collado-Vides J (2000) Operons in Escherichia coli: genomic analyses and predictions. Proc Natl Acad Sci U S A 97:6652–6657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salgado H, Peralta-Gil M, Gama-Castro S, Santos-Zavaleta A, Muñiz-Rascado L et al (2013) RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more. Nucleic Acids Res 41:D203–D213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taboada B, Verde C, Merino E (2010) High accuracy operon prediction method based on STRING database scores. Nucleic Acids Res 38:e130

    Article  PubMed  PubMed Central  Google Scholar 

  • Vey G (2013) Metagenomic guilt by association: an operonic perspective. PLoS ONE 8:e71484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vey G, Charles TC (2014) MetaProx: the database of metagenomic proximons. Database (Oxford). 2014: bau097

  • Vey G, Moreno-Hagelsieb G (2010) Beyond the bounds of orthology: functional inference from metagenomic context. Mol BioSyst 6:1247–1254

    Article  CAS  PubMed  Google Scholar 

  • Vey G, Moreno-Hagelsieb G (2012) Metagenomic annotation networks: construction and applications. PLoS ONE 7:e41283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a Natural Sciences and Engineering Research Council of Canada Strategic Grant. The authors thank Gabriel Moreno-Hagelsieb of Wilfrid Laurier University for conversations about metagenomic operons.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Vey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vey, G., Charles, T.C. An analysis of the validity and utility of the proximon proposition. Funct Integr Genomics 16, 215–220 (2016). https://doi.org/10.1007/s10142-016-0478-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-016-0478-z

Keywords

Navigation