Skip to main content
Log in

Treatment of potato tubers with the synthetic cytokinin 1-(α-ethylbenzyl)-3-nitroguanidine results in rapid termination of endodormancy and induction of transcripts associated with cell proliferation and growth

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Perennial plants undergo repression of meristematic activity in a process called dormancy. Dormancy is a complex metabolic process with implications for plant breeding and crop yield. Endodormancy, a specific subclass of dormancy, is characteristic of internal physiological mechanisms resulting in growth suppression. In this study, we examine transcriptional changes associated with the natural cessation of endodormancy in potato tuber meristems and in endodormant tubers treated with the cytokinin analog 1-(α-ethylbenzyl)-3-niroguanidine (NG), which terminates dormancy. RNA-sequencing was used to examine transcriptome changes between endodormant and non-dormant meristems from four different harvest years. A total of 35,091 transcripts were detected with 2132 differentially expressed between endodormant and non-dormant tuber meristems. Endodormant potato tubers were treated with the synthetic cytokinin NG and transcriptome changes analyzed using RNA-seq after 1, 4, and 7 days following NG exposure. A comparison of natural cessation of dormancy and NG-treated tubers demonstrated that by 4 days after NG exposure, potato meristems exhibited transcriptional profiles similar to the non-dormant state with elevated expression of multiple histones, a variety of cyclins, and other genes associated with proliferation and cellular replication. Three homologues encoding for CYCD3 exhibited elevated expression in both non-dormant and NG-treated potato tissues. These results suggest that NG terminates dormancy and induces expression cell cycle-associated transcripts within 4 days of treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anzola JM, Sieberer T, Ortbauer M, Butt H, Korbei B, Weinhofer I, Müllner AE, Luschnig C (2010) Putative Arabidopsis Transcriptional Adaptor Protein (PROPORZ1) is required to modulate histone acetylation in response to auxin. Proc Natl Acad Sci 107:10308–10313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bielenberg D, Wang Y, Li Z, Zhebentyayeva T, Fan S, Reighard G, Scorza R, Abbott A (2008) Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet Genomes 4:495–507

    Article  Google Scholar 

  • Birch PJ, Bryan G, Fenton B, Gilroy E, Hein I, Jones J, Prashar A, Taylor M, Torrance L, Toth I (2012) Crops that feed the world 8: Potato: are the trends of increased global production sustainable? Food Sec 4:477–508

    Article  Google Scholar 

  • Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan M, Nekrutenko A, Taylor J (2010) Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol 19(10):11–21, Chapter 19

    Google Scholar 

  • Burton WG (1989) The Potato, 3rd Edn. Longman Scientific and Technical, Harlow, Essex, p 742

  • Campbell MA, Suttle J, Sell TW (1996) Changes in cell cycle status and expression of p34cdc2 kinase during potato tuber meristem dormancy. Physiol Plant 98:743–752

    Article  CAS  Google Scholar 

  • Campbell MA, Segear E, Beers L, Knauber D, Suttle J (2008) Dormancy in potato tuber meristems: chemically induced cessation in dormancy matches the natural process based on transcript profiles. Funct Integr Genomic 8:317–328

    Article  CAS  Google Scholar 

  • Campbell M, Gleichsner A, Hilldorfer L, Horvath D, Suttle J (2011) The sprout inhibitor 1,4-dimethylnaphthalene induces the expression of the cell cycle inhibitors KRP1 and KRP2 in potatoes. Funct Integr Genomic 12:533–541

    Article  Google Scholar 

  • Consortium TPGS (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195

    Article  Google Scholar 

  • De Vos D, Dzhurakhalov A, Draelants D, Bogaerts I, Kalve S, Prinsen E, Vissenberg K, Vanroose W, Broeckhove J, Beemster GTS (2012) Towards mechanistic models of plant organ growth. J Exp Bot 63:3325–3337

    Article  PubMed  Google Scholar 

  • Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array repository. Nucleic Acid Res 30:207–210

  • Gai S, Zhang Y, Liu C, Zhang Y, Zheng G (2013) Transcript profiling of Paoenia ostii during artificial chilling induced dormancy release identifies activation of GA pathway and carbohydrate metabolism. PLoS One 8:e55297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gimeno-Gilles C, Leliévre E, Viau L, Malik-Ghulam M, Ricoult C, Niebel A, Leduc N, Limami AM (2009) ABA-mediated inhibition of germination is related to the inhibition of genes encoding cell-wall biosynthetic and architecture: modifying enzymes and structural proteins in Medicago truncatula embryo axis. Mol Plant 2:108–119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goecks J, Nekrutenko A, Taylor J, Team TG (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11:R86

    Article  PubMed Central  PubMed  Google Scholar 

  • Hartmann A, Senning M, Hedden P, Sonnewald U, Sonnewald S (2011) Reactivation of meristem activity and sprout growth in potato tubers require both cytokinin and gibberellin. Plant Physiol 155:776–796

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hemberg T (1970) The action of some cytokinins on the rest-period and the content of acid growth-inhibiting substances in potato. Physiol Plant 23:850–858

    Article  CAS  Google Scholar 

  • Heyl A, Riefler M, Romanov GA, Schmulling T (2012) Properties, functions and evolution of cytokinin receptors. Eur J Cell Biol 91:246–256

    Article  CAS  PubMed  Google Scholar 

  • Horvath D, Chao W, Suttle J, Thimmapuram J, Anderson J (2008) Transcriptome analysis identifies novel responses and potential regulatory genes involved in seasonal dormancy transitions of leafy spurge (Euphorbia esula L.). BMC Genomics 9:536

    Article  PubMed Central  PubMed  Google Scholar 

  • Horvath D, Sung S, Kim D, Chao W, Anderson J (2010) Characterization, expression and function of DORMANCY ASSOCIATED MADS-BOX genes from leafy spurge. Plant Mol Biol 73:169–179

    Article  CAS  PubMed  Google Scholar 

  • Hwang I, Sheen J (2001) Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413:383–389

    Article  CAS  PubMed  Google Scholar 

  • Inze D, De Veylder L (2006) Cell cycle regulation in plant development. Annu Rev Genet 40:77–105

    Article  CAS  PubMed  Google Scholar 

  • Jeddeloh JA, Stokes TL, Richards EJ (1999) Maintenance of genomic methylation requires a SWI2/SNF2-like protein. Nat Genet 22:94–97

    Article  CAS  PubMed  Google Scholar 

  • Kloosterman B, De Koeyer D, Griffiths R, Flinn B, Steuernagel B, Scholz U, Sonnewald S, Sonnewald U, Bryan G, Prat S, Bánfalvi Z, Hammond J, Geigenberger P, Nielsen K, Visser R, Bachem C (2008) Genes driving potato tuber initiation and growth: identification based on transcriptional changes using the POCI array. Funct Integr Genomic 8:329–340

    Article  CAS  Google Scholar 

  • Komaki S, Sugimoto K (2012) Control of the plant cell cycle by developmental and environmental cues. Plant Cell Physiol 53:953–964

    Article  CAS  PubMed  Google Scholar 

  • Lamport DTA, Kieliszewski MJ, Chen Y, Cannon MC (2011) Role of the extensin superfamily in primary cell wall architecture. Plant Physiol 156:11–19

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Law RD, Suttle JC (2003) Transient decreases in methylation at 5′-CCGG-3′ sequences in potato (Solanum tuberosum L.) meristem DNA during progression of tubers through dormancy precede the resumption of sprout growth. Plant Mol Biol 51:437–447

    Article  CAS  PubMed  Google Scholar 

  • Law DR, Suttle JC (2004) Changes in histone H3 and H4 multi-acetylation during natural and forced dormancy break in potato tubers. Physiol Plant 120:642–649

    Article  CAS  Google Scholar 

  • Li Z, Reighard GL, Abbott AG, Bielenberg DG (2009) Dormancy-associated MADS genes from the EVG locus of peach [Prunus persica (L.) Batsch] have distinct seasonal and photoperiodic expression patterns. J Exp Bot 60:3521–3530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu B, Zhang N, Wen Y, Si H, Wang D (2012) Identification of differentially expressed genes in potato associated with tuber dormancy release. Mol Biol Rep 39:11277–11287

    Article  CAS  PubMed  Google Scholar 

  • Pérez F, Vergara R, Or E (2009) On the mechanism of dormancy release in grapevine buds: a comparative study between hydrogen cyanamide and sodium azide. Plant Growth Regul 59:145–152

    Article  Google Scholar 

  • Rentzsch S, Podzimska D, Voegele A, Imbeck M, Müller K, Linkies A, Leubner-Metzger G (2012) Dose- and tissue-specific interaction of monoterpenes with the gibberellin-mediated release of potato tuber bud dormancy, sprout growth and induction of α-amylases and β-amylases. Planta 235:137–151

    Article  CAS  PubMed  Google Scholar 

  • Riou-Khamlichi C, Huntley R, Jacqmard A, Murray JAH (1999) Cytokinin activation of arabidopsis cell division through a D-type cyclin. Science 283:1541–1544

    Article  CAS  PubMed  Google Scholar 

  • Ronning CM, Stegalkina SS, Ascenzi RA, Bougri O, Hart AL, Utterbach TR, Vanaken SE, Riedmuller SB, White JA, Cho J, Pertea GM, Lee Y, Karamycheva S, Sultana R, Tsai J, Quackenbush J, Griffiths HM, Restrepo S, Smart CD, Fry WE, van der Hoeven R, Tanksley S, Zhang P, Jin H, Yamamoto ML, Baker BJ, Buell CR (2003) Comparative analyses of potato expressed sequence tag libraries. Plant Physiol 131:419–429

    Article  PubMed Central  PubMed  Google Scholar 

  • Santamaria ME, Rodriguez R, Canal MJ, Toorop PE (2011) Transcriptome analysis of chestnut (Castanea sativa) tree buds suggests a putative role for epigenetic control of bud dormancy. Ann Bot 108:485–498

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmulling T (2013) Cytokinin. In: William JL, Lane MD (eds) Encyclopedia of biological chemistry. Academic, Waltham, pp 627–631

    Chapter  Google Scholar 

  • Scofield S, Dewitte W, Nieuwland J, Murray JAH (2013) The Arabidopsis homeobox gene SHOOT MERISTEMLESS has cellular and meristem-organisational roles with differential requirements for cytokinin and CYCD3 activity. Plant J 75:53–66

    Article  CAS  PubMed  Google Scholar 

  • Senning M, Sonnewald U, Sonnewald S (2010) Deoxyuridine triphosphatase expression defines the transition from dormant to sprouting potato tuber buds. Mol Breed 26:525–531

    Article  CAS  Google Scholar 

  • Suttle J (2004) Physiological regulation of potato tuber dormancy. Am J Potato Res 81:253–262

    Article  CAS  Google Scholar 

  • Suttle JC (2007) Dormancy and sprouting. In: Vreugdenhil D (ed) Potato biology and biotechnology. Advances and perspectives. Elsevier, Amsterdam, pp 287–309

    Chapter  Google Scholar 

  • Suttle J (2008) Effects of synthetic phenylurea and nitroguanidine cytokinins on dormancy break and sprout growth in Russet Burbank minitubers. Am J Pot Res 85:121–128

    Article  CAS  Google Scholar 

  • Suttle JC, Abrams SR, De Stefano-Beltrán L, Huckle LL (2012) Chemical inhibition of potato ABA-8′-hydroxylase activity alters in vitro and in vivo ABA metabolism and endogenous ABA levels but does not affect potato microtuber dormancy duration. J Exp Bot 63(15):5717–5725

    Article  CAS  PubMed  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protocol 7:562–578

    Article  CAS  Google Scholar 

  • Van Sandt VST, Suslov D, Verbelen J-P, Vissenberg K (2007) Xyloglucan endotransglucosylase activity loosens a plant cell wall. Ann Bot 100:1467–1473

    Article  PubMed Central  PubMed  Google Scholar 

  • Vaughn K, Lehnen G (1991) Mitotic disrupter herbicides. Weed Sci 39:450–457

    CAS  Google Scholar 

  • Wolf S, Hématy K, Höfte H (2012) Growth control and cell wall signaling in plants. Annu Rev Plant Biol 63:381–407

    Article  CAS  PubMed  Google Scholar 

  • Zilberman D, Cao X, Jacobsen SE (2003) ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 299:716–719

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funds for this work were provided by an ROA grant to MC and CRB from the National Science Foundation (DBI-0834044).The sequence data evaluated in this publication have been deposited in the Gene Expression Omnibus at NCBI (Edgar et al 2002) with the accession numbers GSE61690 and GSE61796 (www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSExxxxx). 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Campbell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Table 1

(XLSX 158 kb)

Supplemental Table 2

(XLSX 252 kb)

Supplemental Table 3

(XLSX 1517 kb)

Supplemental Table 4

(XLSX 42 kb)

Supplemental Table 5

(XLSX 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campbell, M., Suttle, J., Douches, D.S. et al. Treatment of potato tubers with the synthetic cytokinin 1-(α-ethylbenzyl)-3-nitroguanidine results in rapid termination of endodormancy and induction of transcripts associated with cell proliferation and growth. Funct Integr Genomics 14, 789–799 (2014). https://doi.org/10.1007/s10142-014-0404-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-014-0404-1

Keywords

Navigation