Skip to main content
Log in

The barley Frost resistance-H2 locus

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Frost resistance-H2 (Fr-H2) is a major QTL affecting freezing tolerance in barley, yet its molecular basis is still not clearly understood. To gain a better insight into the structural characterization of the locus, a high-resolution linkage map developed from the Nure × Tremois cross was initially implemented to map 13 loci which divided the 0.602 cM total genetic distance into ten recombination segments. A PCR-based screening was then applied to identify positive bacterial artificial chromosome (BAC) clones from two genomic libraries of the reference genotype Morex. Twenty-six overlapping BACs from the integrated physical-genetic map were 454 sequenced. Reads assembled in contigs were subsequently ordered, aligned and manually curated in 42 scaffolds. In a total of 1.47 Mbp, 58 protein-coding sequences were identified, 33 of which classified according to similarity with sequences in public databases. As three complete barley C-repeat Binding Factors (HvCBF) genes were newly identified, the locus contained13 full-length HvCBFs, four Related to AP2 Triticeae (RAPT) genes, and at least five CBF pseudogenes. The final overall assembly of Fr-H2 includes more than 90 % of target region: all genes were identified along the locus, and a general survey of Repetitive Elements obtained. We believe that this gold-standard sequence for the Morex Fr-H2 will be a useful genomic tool for structural and evolutionary comparisons with Fr-H2 in winter-hardy cultivars along with Fr-2 of other Triticeae crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agarwal PK, Agarwal P, Reddy M, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274

    Article  PubMed  CAS  Google Scholar 

  • Akar T, Francia E, Tondelli A et al (2009) Marker-assisted characterization of frost tolerance in barley (Hordeum vulgare L.). Plant Breed 128:381–386

    Article  Google Scholar 

  • Allen MD, Yamasaki K, Ohme-Takagi M et al (1998) A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J 17:5484–5496

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Alpert M, Wanamaker S, Duma D et al (2011) A genome sequence resource for barley. Barley Genet Newslett 41:10–11

    Google Scholar 

  • Amplicon Express (2008) Users manual for BAC pools produced by Amplicon Express. http://www.genomex.com/aexDownloads.php

  • Ariyadasa R, Stein N (2012) Advances in BAC-based physical mapping and map integration strategies in plants. Journal of Biomedicine and Biotechnology 2012.

  • Badawi M, Danyluk J, Boucho B et al (2007) The CBF gene family in hexaploid wheat and its relationship to the phylogenetic complexity of cereal CBF’s. Mol Gen Genomics 277:533–554

    Article  CAS  Google Scholar 

  • Brisson N, Gate P, Gouache D et al (2010) Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Field Crop Res 119:201–212

    Article  Google Scholar 

  • Brodie R, Roper RL, Upton C (2004) JDotter: a Java interface to multiple dotplots generated by dotter. Bioinformatics 20:279–281

    Article  PubMed  CAS  Google Scholar 

  • Caldwell KS, Langridge P, Powell W (2004) Comparative sequence analysis of the region harboring the hardness locus in barley and its colinear region in rice. Plant Physiol 136:3177–3190

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Campoli C, Matus-Cadiz MA, Pozniak CJ et al (2009) Comparative expression of Cbf genes in the Triticeae under different acclimation induction temperatures. Mol Gen Genomics 282:141–152

    Article  CAS  Google Scholar 

  • Chain P, Grafham D, Fulton R et al (2009) Genome project standards in a new era of sequencing. Science 326:236–237

    Article  PubMed  CAS  Google Scholar 

  • Chevreux B, Wetter T, Suhai S (1999) Genome sequence assembly using trace signals and additional sequence information. Computer science and biology: proceedings of the German conference on, bioinformatics (GCB). pp 45–56.

  • Choulet F, Wicker T, Rustenholz C et al (2010) Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces. Plant Cell Online 22:1686–1701

    Article  CAS  Google Scholar 

  • Collins NC, Shirley NJ, Saeed M et al (2008) An ALMT1 gene cluster controlling aluminum tolerance at the Alt4 locus of rye (Secale cereale L.). Genetics 179:669–682

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Consortium IBGS (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716

    Google Scholar 

  • Dong C-J, Liu J-Y (2010) The Arabidopsis EAR-motif-containing protein RAP2. 1 Functions as an active transcriptional repressor to keep stress responses under tight control. BMC Plant Biol 10:47

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Druka A, Kudrna D, Kannangara CG et al (2002) Physical and genetic mapping of barley (Hordeum vulgare) germin-like cDNAs. Proc Natl Acad Sci 99:850–855

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y et al (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt-and cold-responsive gene expression. Plant J 33:751–763

    Article  PubMed  CAS  Google Scholar 

  • Feuillet C, Leach JE, Rogers J et al (2011) Crop genome sequencing: lessons and rationales. Trends Plant Sci 16:77–88

    Article  PubMed  CAS  Google Scholar 

  • Feuillet C, Stein N, Rossini L et al (2012) Integrating cereal genomics to support innovation in the Triticeae. Funct Integr Genom 12:573–583

    Article  CAS  Google Scholar 

  • Francia E, Barabaschi D, Tondelli A et al (2007) Fine mapping of a Hv CBF gene cluster at the frost resistance locus Fr-H2 in barley. TAG Theor Appl Genet 115:1083–1091

    Article  CAS  Google Scholar 

  • Francia E, Rizza F, Cattivelli L et al (2004) Two loci on chromosome 5H determine low-temperature tolerance in a “Nure”(winter) × “Tremois”(spring) barley map. TAG Theor Appl Genet 108:670–680

    Article  CAS  Google Scholar 

  • Galiba G, Quarrie S, Sutka J et al (1995) RFLP mapping of the vernalization (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of wheat. Theor Appl Genet 90:1174–1179

    Article  PubMed  CAS  Google Scholar 

  • Gilles A, Meglecz E, Pech N et al (2011) Accuracy and quality assessment of 454 GS-FLX Titanium pyrosequencing. BMC Genomics 12:245

    Article  PubMed Central  PubMed  Google Scholar 

  • Gu YQ, Anderson OD, Londeorë CF et al (2003) Structural organization of the barley d-hordein locus in comparison with its orthologous regions of wheat genomes. Genome 46:1084–1097

    Article  PubMed  CAS  Google Scholar 

  • Himmelbach A, Liu L, Zierold U et al (2010) Promoters of the barley germin-like GER4 gene cluster enable strong transgene expression in response to pathogen attack. Plant Cell Online 22:937–952

    Article  CAS  Google Scholar 

  • Jaglo KR, Kleff S, Amundsen KL et al (2001) Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol 127:910–917

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Knox AK, Dhillon T, Cheng H et al (2010) CBF gene copy number variation at Frost Resistance-2 is associated with levels of freezing tolerance in temperate-climate cereals. TAG Theor Appl Genet 121:21–35

    Article  Google Scholar 

  • Knox AK, Li C, Vagujfalvi A et al (2008) Identification of candidate CBF genes for the frost tolerance locus Fr-A m 2 in Triticummonococcum. Plant Mol Biol 67:257–270

    Article  PubMed  CAS  Google Scholar 

  • Leroy P, Guilhot N, Sakai H, et al. (2012) TriAnnot: a versatile and high performance pipeline for the automated annotation of plant genomes. Frontiers in plant science 3.

  • Limin AE, Fowler DB (2006) Low-temperature tolerance and genetic potential in wheat (Triticum aestivum L.): response to photoperiod, vernalization, and plant development. Planta 224:360–366

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y et al (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell Online 10:1391–1406

    Article  CAS  Google Scholar 

  • Luo M-C, Thomas C, You FM et al (2003) High-throughput fingerprinting of bacterial artificial chromosomes using the snapshot labeling kit and sizing of restriction fragments by capillary electrophoresis. Genomics 82:378–389

    Article  PubMed  CAS  Google Scholar 

  • Manosalva PM, Davidson RM, Liu B et al (2009) A germin-like protein gene family functions as a complex quantitative trait locus conferring broad-spectrum disease resistance in rice. Plant Physiol 149:286–296

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Marchler-Bauer A, Lu S, Anderson JB et al (2011) CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39:D225–D229

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • McHale LK, Haun WJ, Xu WW et al (2012) Structural variants in the soybean genome localize to clusters of biotic stress-response genes. Plant Physiol 159:1295–1308

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Meyer M, Stenzel U, Hofreiter M (2008) Parallel tagged sequencing on the 454 platform. Nat Protoc 3:267–278

    Article  PubMed  CAS  Google Scholar 

  • Miller AK, Galiba G, Dubcovsky J (2006) A cluster of 11 CBF transcription factors is located at the frost tolerance locus Fr-A m 2 in Triticum monococcum. Mol Gen Genomics 275:193–203

    Article  CAS  Google Scholar 

  • Morrell PL, Buckler ES, Ross-Ibarra J (2011) Crop genomics: advances and applications. Nat Rev Genet 13:85–96

    PubMed  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nicholas K, Nicholas H, Deerfield D (1997) GeneDoc: Analysis and Visualization of Genetic Variation. Embnet.news 14.

  • Okamuro JK, Caster B, Villarroel R et al (1997) The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci 94:7076–7081

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pearce S, Zhu J, Boldizsar A et al (2013) Large deletions in the CBF gene cluster at the Fr-B2 locus are associated with reduced frost tolerance in wheat. Theor Appl Genet 126(11):2683–2697

    Article  PubMed  Google Scholar 

  • Pecchioni N, Kosová K, Vítámvás P, et al. (2014). Genomics of low-temperature tolerance for an increased sustainability of wheat and barley production. In: Tuberosa R, Graner A, Frison E (eds) Genomics of plant genetic resources - vol. 2 Crop productivity, food security and nutritional quality. Springer Netherlands, pp 149–183.

  • Rizza F, Pagani D, Gut M et al (2011) Diversity in the response to low temperature in representative barley genotypes cultivated in Europe. Crop Sci 51:2759–2779

    Article  CAS  Google Scholar 

  • Rostoks N, Park Y-J, Ramakrishna W et al (2002) Genomic sequencing reveals gene content, genomic organization, and recombination relationships in barley. Funct Integr Genomics 2:51–59

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    PubMed  CAS  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG et al (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russel D (2001) Molecular cloning - a laboratory manual. (Cold Spring Harbor, New York:)., 3rd ed. Cold Spring Harbor Laboratory Press.

  • Sandve SR, Fjellhem S (2010) Did gene family expansions during the Eocene-Oligocene boundary climate cooling play a role in Pooideae adaptation to cool climates? Mol Ecol 19:2075–2088

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Ryan PR, Delhaize E et al (2006) Sequence upstream of the wheat (Triticum aestivum L.) ALMT1 gene and its relationship to aluminum resistance. Plant Cell Physiol 47:1343–1354

    Article  PubMed  CAS  Google Scholar 

  • Schulte D, Ariyadasa R, Shi B et al (2011) BAC library resources for map-based cloning and physical map construction in barley (Hordeum vulgare L.). BMC Genomics 12:247

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Skinner JS, Szucs P, von Zitzewitz J et al (2006) Mapping of barley homologs to genes that regulate low temperature tolerance in Arabidopsis. Theor Appl Genet 112:832–842

    Article  PubMed  CAS  Google Scholar 

  • Skinner JS, Zitzewitz J, Szucs P et al (2005) Structural, functional, and phylogenetic characterization of a large CBF gene family in barley. Plant Mol Biol 59:533–551

    Article  PubMed  CAS  Google Scholar 

  • Soderlund C, Humphray S, Dunham A, French L (2000) Contigs built with fingerprints, markers, and FPC V4. 7. Genome Res 10:1772–1787

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Spannagl M, Martis MM, Pfeifer M et al (2013) Analysing complex Triticeae genomes—concepts and strategies. Plant Methods 9:35

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: Join Map. Plant J 3:739–744

    Article  CAS  Google Scholar 

  • Stein N (2007) Triticeae genomics: advances in sequence analysis of large genome cereal crops. Chromosom Res 15:21–31

    Article  CAS  Google Scholar 

  • Steuernagel B, Taudien S, Gundlach H et al (2009) De novo 454 sequencing of barcoded BAC pools for comprehensive gene survey and genome analysis in the complex genome of barley. BMC Genomics 10:547

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci 94:1035–1040

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sutton T, Baumann U, Hayes J et al (2007) Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science 318:1446–1449

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Taudien S, Steuernagel B, Ariyadasa R et al (2011) Sequencing of BAC pools by different next generation sequencing platforms and strategies. BMC Res Notes 4:411

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Thomashow MF (2010) Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol 154:571–577

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tondelli A, Francia E, Barabaschi D et al (2006) Mapping regulatory genes as candidates for cold and drought stress tolerance in barley. TAG Theor Appl Genet 112:445–454

    Article  CAS  Google Scholar 

  • Tondelli A, Francia E, Barabaschi D et al (2011) Inside the CBF locus in Poaceae. Plant Sci 180:39–45

    Article  PubMed  CAS  Google Scholar 

  • Vagujfalvi A, Galiba G, Cattivelli L, Dubcovsky J (2003) The cold-regulated transcriptional activator Cbf3 is linked to the frost-tolerance locus Fr-A2 on wheat chromosome 5A. Mol Gen Genomics 269:60–67

    CAS  Google Scholar 

  • Varshney R, Grosse I, Hahnel U et al (2006) Genetic mapping and BAC assignment of EST-derived SSR markers shows non-uniform distribution of genes in the barley genome. Theor Appl Genet 113:239–250

    Article  PubMed  CAS  Google Scholar 

  • Wei F, Stein JC, Liang C et al (2009) Detailed analysis of a contiguous 22-Mb region of the maize genome. PLoS Genet 5:e1000728

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yim Y-S, Moak P, Sanchez-Villeda H et al (2007) A BAC pooling strategy combined with PCR-based screenings in a large, highly repetitive genome enables integration of the maize genetic and physical maps. BMC Genomics 8:47

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yu P, Wang C, Xu Q et al (2011) Detection of copy number variations in rice using array-based comparative genomic hybridization. BMC Genomics 12:372

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yu Y, Tomkins J, Waugh R et al (2000) A bacterial artificial chromosome library for barley (Hordeum vulgare L.) and the identification of clones containing putative resistance genes. TAG Theor Appl Genet 101:1093–1099

    Article  CAS  Google Scholar 

  • Zdobnov EM, Apweiler R (2001) InterProScan-an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17:847–848

    Article  PubMed  CAS  Google Scholar 

  • Zhu Q, Zhang J, Gao X et al (2010) The Arabidopsis AP2/ERF transcription factor RAP2. 6 participates in ABA, salt and osmotic stress responses. Gene 457:1–12

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to J Knibbiche, A Kusserow, and S Koenig for their help in BAC clone handling and Roche/454 sequencing, and to G Malagoli Tagliazucchi and S Bicciato for assistance in bioinformatic analyses. The work was partially funded by the Fondazione Cassa di Risparmio di Modena, Progetto di Ricerca Internazionale FROSTMAP “Physical mapping of the barley Frost resistance-H2 (Fr-H2) locus”, and by the GENOMORE project of the Fondazione Cassa di Risparmio di Carpi (http://www.fondazionecrcarpi.it/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Francia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLS 101 kb)

ESM 2

(PDF 960 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasquariello, M., Barabaschi, D., Himmelbach, A. et al. The barley Frost resistance-H2 locus. Funct Integr Genomics 14, 85–100 (2014). https://doi.org/10.1007/s10142-014-0360-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-014-0360-9

Keywords

Navigation