Skip to main content
Log in

The epitopes in wheat proteins for defining toxic units relevant to human health

  • Review
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Wheat-related disorders are well-studied health problems. Knowledge of the composition and amounts of epitopes present in a single wheat sample represents a significant gap, and the detailed wheat proteome datasets now available can provide the necessary information to carry out an estimation of allergen prediction for a single cultivar. The combined use of genome sequence and allergen databases, prediction methodology, and cereal chemistry results in better understanding of the level of toxicity present in the end-products produced from wheat flour. The workflow presented in this review provides information about the number and distribution of epitopes at single protein, or protein fraction, levels. In addition, epitopes present in the highest frequency and harmful proteins expressed in the highest amount can be identified. The “epitope toxicity” value obtained in this way is a significant research output from the analysis of large datasets that can be applied to the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akagawa M, Takeshi M, Shigenori I, Morita N, Suyamato K (2007) Proteomic analysis of wheat flour allergens. J Agric Food Chem 55:6863–6870

    Article  PubMed  CAS  Google Scholar 

  • Altenbach SB, Kothari KM, Tanaka CK, Hurkman WJ (2007) Genes encoding the PR-4 protein wheatwin are developmentally regulated in wheat grains and respond to high temperatures during grainfill. Plant Sci 173:135–143

    Article  CAS  Google Scholar 

  • Amano M, Ogawa H, Kojima K, Kamidaira T, Suetsugu S, Yoshihama M, Satoh T, Samejima T, Matsumoto I (1998) Identification of the major allergens in wheat flour responsible for baker's asthma. Biochem J 330:1229–1234

    PubMed  CAS  Google Scholar 

  • Anderson RP, Wieser H (2006) Medical applications of gluten—composition knowledge. In: Wrigley CW, Békés F, Bushuk W (eds) Gliadin and glutenin. The unique balance of wheat quality. AACCI Press, St Paul, pp 387–409

    Google Scholar 

  • Anderson RP, Degano P, Godkin AJ, Jewell DP, Hill AVS (2000) In vivo antigen challenge in celiac disease identifies a single transglutaminase-modified peptid as the dominant A gliadin T-cell epitope. Nature (Med) 6:337–342

    Article  CAS  Google Scholar 

  • Armentia A, Martin-Santos JM, Blanco M (1990) Exercise induced anaphylaxis reaction to grain flows. Ann Allergy 65:149–151

    PubMed  CAS  Google Scholar 

  • Bredehorst R, David K (2001) What establishes a protein as an allergen? J Chromatogr B Biomed Sci Appl 756:33–40

    Article  PubMed  CAS  Google Scholar 

  • Breiteneder H (2008) Can any protein become an allergen? Rev Fr Allergol Immunol Clin 2008(48):135–138

    Google Scholar 

  • Breiteneder H, Radauer C (2004) A classification of plant food allergens. J Allergy Clin Immunol 113:821–830

    Article  PubMed  CAS  Google Scholar 

  • Brusic V, Rudy G, Honeyman G, Hammer J, Harrison LC (1998) Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network. Bioinformatics 14:121–130

    Article  PubMed  CAS  Google Scholar 

  • Brusic V, Petrovsky N, Zhang G, Bajic VB (2002) Prediction of promiscuous peptides that bind HLA class I molecules. Immunol Cell Biol 80:280–285

    Article  PubMed  CAS  Google Scholar 

  • Brusic V, Petrovsky N, Gendel SM, Millot M, Gigonzac O, Stelman SJ (2003) Computational tools for the study of allergens. Allergy 58:1083–1092

    Article  PubMed  CAS  Google Scholar 

  • Brusic V, Bajic VB, Petrovsky N (2004) Computational methods for prediction of T-cell epitopes—a framework for modelling, testing, and applications. Methods 34(4):436–443

    Article  PubMed  CAS  Google Scholar 

  • Catassi C, Fasano A (2008) Celiac disease. In: Arendt EK, Dal Bello F (eds) Gluten-free cereal products and beverages. Academic Press, San Diego, pp 1–28

    Chapter  Google Scholar 

  • Chou PY, Fasman GD (2006) Prediction of the secondary structure of proteins from their amino acid sequence. In: Meister A (ed) Advances in enzymology and related areas of molecular biology, vol 47. John Wiley & Sons, Inc, Hoboken

    Google Scholar 

  • Davies IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall WB, Snoeyink J, Richardson JS, Richardson DC (2007) MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 35:W375–W383, 10.1093/nar/gkm216

    Article  Google Scholar 

  • Donnes P, Elofsson A (2002) Prediction of MHC class I binding peptides, using SVMHC. BMC Bioinformatics 3:25

    Article  PubMed  Google Scholar 

  • Doytchinova IA, Walshe V, Borrow P, Flower DR (2005) Towards the chemometric dissection of peptide-HLAA* 0201 binding affinity: comparison of local and global QSAR models. J Comput Aided Mol Des 19:203–212

    Article  PubMed  CAS  Google Scholar 

  • Dupont FM, Vensel W, Tanaka CK, Hurkman WJ, Altenbach SB (2011) Deciphering the complexities of the wheat flour proteome using quantitative two-dimensional electrophoresis, three proteases and tandem mass spectrometry. Proteome Sci 9:10

    Article  PubMed  CAS  Google Scholar 

  • Emini EA, Hughes JV, Perlow DS, Boger J (1985) Induction of hepatitis A virus neutralizing antibody by a virus-specific synthetic peptide. J Virol 55:836–839

    PubMed  CAS  Google Scholar 

  • Garsed K, Scott BB (2007) Can oats be taken in a gluten-free diet? A systematic review. Scand J Gastroenterol 42(2):171–178

    Article  PubMed  Google Scholar 

  • Green PH, Cellier C (2007) Celiac disease. N Engl J Med 357:1731–1743. doi:10.1056/NEJMra071600

    Article  PubMed  CAS  Google Scholar 

  • Henderson KN, Tye-Din JA, Reid HH, Chen Z, Borg NA, Beissbarth T, Tatham A, Mannering SI, Purcell AW, Dudek NL, van Heel DA, McCluskey J, Rossjohn J, Anderson RP (2007) A structural and immunological basis for the role of human leukocyte antigen DQ8 in celiac disease. Immunity 27:23–34

    Article  PubMed  CAS  Google Scholar 

  • Juhász A, Gy G, Sebestyén E, Haraszi R, Tamás L, Balázs E (2012) Brachypodium distachyon as a model for defining the allergen potential of non-prolamin proteins. Funct Integr Genomics 12:439–446. doi:10.1007/s10142-012-0294-z

    Article  PubMed  Google Scholar 

  • Karplus PA, Schultz GE (1985) Prediction of chain flexibility in proteins. Naturwissenschaften 72:212–222

    Article  CAS  Google Scholar 

  • Kolaskar AS, Tongaonkar PC (1990) A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett 276(1–2):172–174

    Article  PubMed  CAS  Google Scholar 

  • Laurièrre M, Pecquet C, Bouchez-Mahiout I, Snegaroff J, Bayrou O, Raison-Peyron N, Vigan M (2006) Hydrolyzed wheat proteins present in cosmetics can induce immediate hypersensitivities. Contact Dermatitis 54:283–289

    Article  Google Scholar 

  • MacNamara A, Kadolsky U, Bangham CRM, Asquith B (2009) T-cell epitope prediction: rescaling can mask biological variation between MHC molecules. PLoS Comput Biol 5(3):e1000327

    Article  PubMed  Google Scholar 

  • Mills ENC, Madsen C, Shewry PR, Wichers HJ (2003) Food allergens of plant origin—their molecular and evolutionary relationships. Trends Food Sci Technol 14:145–156

    Article  CAS  Google Scholar 

  • Moolhuijzen P (2011) Bioinformatics approaches for functional predictions in diverse informatics environments. PhD Thesis. Murdoch University, Perth

    Google Scholar 

  • Osorio C, Wen N, Gemini R, Zemetra R, Wettstein D, Rustgi S (2012) Targeted modification of wheat grain protein to reduce the content of celiac causing epitopes. Funct Interg Genomics 12(3):417–438. doi:10.1007/s10142-012-0287-y

    Article  CAS  Google Scholar 

  • Parker JM, Guo D, Hodges RS (1986) New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry 25:5425–5432

    Article  PubMed  CAS  Google Scholar 

  • Popineau Y, Pineau F (1988) Changes of conformation and surface hydrophobicity of gliadins. Lebensm Wiss Technol 21:113–117

    CAS  Google Scholar 

  • Radauer C, Breiteneder H (2007) Evolutionary biology of plant food allergens. J Allergy Clin Immun 120:518–525

    Article  PubMed  CAS  Google Scholar 

  • Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanović S (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50:213–219

    Article  PubMed  CAS  Google Scholar 

  • Rigetti AC, Chillemi GF (1978) Isoelectric focusing of peptides. J Chrom 156:243–251

    Google Scholar 

  • Salcedo G, Quirce S, Diaz-Perales A (2011) Wheat allergens associated with baker’s asthma. J Investig Allergol Clin Immunol 21(2):81–92

    PubMed  CAS  Google Scholar 

  • Salentijn EMJ, Mitea DC, Goryunova SV, van der Meer IM, Padioleau I, Gilissen LJWJ, Koning F, Smulders MJM (2012) Celiac disease T-cell epitopes from gamma-gliadins: immunoreactivity depends on the genome of origin, transcript frequency, and flanking protein variation. BMC Genomics 13:277

    Article  PubMed  Google Scholar 

  • Sampson HA, Metcalfe DD (1992) Food allergies. J Am Med Assoc 268:2840–2844

    Article  CAS  Google Scholar 

  • Sapone A, Bai JC, Ciacci C, Dolinsek J, Green PHR, Hadjivassiliou M, Kaukinen K, Rostami K, Sanders DS, Schumann M, Ullrich R, Villalta D, Volta U, Catassi C, Fasano A (2012) Spectrum of gluten-related disorders: consensus on new nomenclature and classification. BMC Med 10:13. doi:10.1186/1741-7015-10-13

    Article  PubMed  Google Scholar 

  • Shan L, Molberg Ø, Parrot I, Hausch F, Filiz F, Gray GM, Sollid LM, Khosla C (2002) Structural basis for gluten intolerance in celiac sprue. Science 297(5590):2275–2279

    Article  PubMed  CAS  Google Scholar 

  • Shewry PR, Miles MJ, Thomson NH, Tatham S (1997) Scanning probe microscopes—applications in cereal science. Cereal Chem 74:193–199

    Article  CAS  Google Scholar 

  • Shewry PR, D’Ovidio R, Lafiandra D, Jenkins JA, Mills NF, Békés F (2009) Wheat grain proteins. In: Khan K, Shewry PR (eds) Wheat chemistry and technology. AACC Press, St Paul, pp 223–298

    Google Scholar 

  • Sollid LM, Qiao SW, Anderson RP, Gianfrani C, Koning F (2012) Nomenclature and listing of celiac disease relevant gluten T-cell epitopes restricted by HLA-DQ molecules. Immunogenetics 64:455–460. doi:10.1007/s00251-012-0599-z

    Article  PubMed  Google Scholar 

  • Tal M, Silberstein A, Nusser E (1980) Why does Coomassie Brilliant Blue R interact differently with different proteins? A partial answer. Biol Chem 260:9976–9980

    Google Scholar 

  • Tasleem-Tahir A, Nadaud I, Chambon C, Branlard G (2012) Expression profiling of starchy endosperm metabolic proteins at 21 stages of wheat grain development. J Proteome Res 11:2754–2773

    Article  PubMed  CAS  Google Scholar 

  • Tatham AS, Shewry PR (2008) Allergens in wheat and related cereals. Clin Exp Allergy 38:1712–1726

    PubMed  CAS  Google Scholar 

  • Tomar N, De RK (2010) Immunoinformatics: an integrated scenario. Immunology 131:153–168

    Article  PubMed  CAS  Google Scholar 

  • Van Heel DA, West J (2006) Recent advances in coeliac disease. Gut 55:1037–1046

    Article  PubMed  Google Scholar 

  • Van Regenmortel MHV (1996) Mapping epitope structure and activity: from one-dimensional prediction to four-dimensional description of antigenic specificity. Methods 9:465–472

    Article  PubMed  Google Scholar 

  • Vogel JP et al (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  CAS  Google Scholar 

  • Wieser H (2008) Detection of gluten. In: Arendt EK, Dal Bello F (eds) Gluten-free cereal products and beverages. Academic Press, San Diego, pp 47–80

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Professor Rudi Appels for the motivating discussions and suggestions during the analyses and the preparation of the manuscript. The Project is supported by the European Union and co-financed by the European Social Fund (grant agreement no. TÁMOP-4.2.2.A-11/1/KONV-2012-0008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angéla Juhász.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Epitope lists used in the analyses are presented as IEDB_CD epitopes, IEDB_WA epitopes; core epitopes based on Sollid et al. 2012; predicted T cell epitopes using both Butte86 and Recital protein sets (XLSX 49 kb)

Supplementary Table 2

Protein IDs used in the present analyses and their corresponding protein IDs including spot numbers as presented in the papers of Dupont et al. (2011) and Tasleem-Tahir et al. (2012) (XLSX 17 kb)

Supplementary Table 3

Distribution of different epitope sets in Butte 86 and Recital databases. CD epitope subtypes containing tTG sites and core epitopes are also represented in separate columns, both for digested and undigested protein sets (XLSX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juhász, A., Gell, G., Békés, F. et al. The epitopes in wheat proteins for defining toxic units relevant to human health. Funct Integr Genomics 12, 585–598 (2012). https://doi.org/10.1007/s10142-012-0302-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-012-0302-3

Keywords

Navigation