Skip to main content
Log in

Genome-wide identification of rice class I metallothionein gene: tissue expression patterns and induction in response to heavy metal stress

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Metallothioneins (MTs) are members of a family of cysteine-rich low molecular weight polypeptides which play an important role in heavy metal detoxification and homeostasis of intracellular metal ions in plant. Though MT genes from some selected plants have been characterized with respect to their protein sequences, kinetic properties and tissue-specific localization, no detailed study has been carried out in rice. Here, we present genome-wide identification, structural and expression analyses of rice MT gene family. Our analysis suggests presence of 11 class I MT genes in rice genome (Release 7 of the MSU Rice Genome Annotation Project) which are differentially expressed during growth and development, in various tissues and during biotic and abiotic stresses. Our analyses suggest that class I MT proteins in rice differ in tissue localization as well as in heavy metal coordination chemistry. We also suggest that some MTs have a predominant role in detoxification of As (V) in arsenic-tolerant rice cultivars. Our analysis suggests that apart from transcriptional regulation, post-transcriptional alternative splicing in some members of this family takes place during growth and development, in various tissues and during biotic and abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andrews GK (2000) Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochem Pharmacol 59:95–104

    Article  PubMed  CAS  Google Scholar 

  • Bratić AM, Majić DB, Samardžć JT, Maksimović VR (2009) Functional analysis of the buckwheat metallothionein promoter: tissue specificity pattern and up-regulation under complex stress stimuli. J Plant Physiol 166:996–1000

    Article  PubMed  Google Scholar 

  • Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo S, McCurdy S, Foy M, Ewan M (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18:630–634

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarty D, Trivedi PK, Misra P, Tiwari M, Shri M, Shukla D, Kumar S, Rai A, Pandey A, Nigam D (2009) Comparative transcriptome analysis of arsenate and arsenite stresses in rice seedlings. Chemosphere 74:688–702

    Article  PubMed  CAS  Google Scholar 

  • Choi D, Kim HM, Yun HK, Park JA, Kim WT, Bok SH (1996) Nicotiana glufinosa L. and its induction by wounding and tobacco mosaic virus infection. Plant Physiol 112:353–359

    Article  PubMed  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  PubMed  CAS  Google Scholar 

  • Domènech J, Orihuela R, Mir G, Molinas M, Atrian S, Capdevila M (2007a) The CdII-binding abilities of recombinant Quercus suber metallothionein: bridging the gap between phytochelatins and metallothioneins. J Biol Inorg Chem 12:867–882

    Article  PubMed  Google Scholar 

  • Domènech J, Tinti A, Capdevila M, Atrian S, Torreggiani A (2007b) Structural study of the zinc and cadmium complexes of a Type 2 plant (Quercus suber) metallothionein: insights by vibrational spectroscopy. Biopolymers 86:240–248

    Article  PubMed  Google Scholar 

  • Dong CJ, WangY YSS, Liu JY (2010) Characterization of a novel rice metallothionein gene promoter: its tissue specificity and heavy metal responsiveness. J Integr Plant Biol 52:914–992

    Article  PubMed  CAS  Google Scholar 

  • Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I (2004) VISTA: computational tools for comparative genomics. Nucl Acids Res 32:W273

    Article  PubMed  CAS  Google Scholar 

  • Freisinger E (2007) Spectroscopic characterization of a fruit specific metallothionein: M. acuminata MT3. Inorg Chim Acta 360:369–380

    Article  CAS  Google Scholar 

  • Gasic K, Korban SS (2007) Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance. Plant Mol Biol 64:361–369

    Google Scholar 

  • Grispen VMJ, Irtelli B, Hakvoort HWJ, Vooijs R, Bliek T, Ten Bookum WM, Verkleij JAC, Schat H (2009) Expression of the Arabidopsis metallothionein 2b enhances arsenite sensitivityand root to shoot translocation in tobacco. Environ Exp Bot 66:69–73

    Article  CAS  Google Scholar 

  • Guo WJ, Bundithya W, Goldsbrough PB (2003) Characterization of the Arabidopsis metallothionein gene family: tissue-specific expression and induction during senescence and in response to copper. New Phytol 159:369–381

    Article  CAS  Google Scholar 

  • Guo WJ, Meetam M, Goldsbrough PB (2008) Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Phyiol 146:1697–1706

    Google Scholar 

  • Hall JH (2002) Celluar mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  PubMed  CAS  Google Scholar 

  • Hamer DH (1986) Metallothionein. Annu Rev Biochem 55:913–951

    Article  PubMed  CAS  Google Scholar 

  • Hassinen VH, Tuomainen M, Peräniemi S, Schat H, Kärenlampi SO, Tervahauta AI (2009a) Metallothioneins 2 and 3 contribute to the metal-adapted phenotype but are not directly linked to Zn accumulation in the metal hyperaccumulator, Thlaspi caerulescens. J Exp Bot 60:187–196

    Article  PubMed  CAS  Google Scholar 

  • Hassinen VH, Vallinkoski VM, Issakainen S, Tervahauta A, Kärenlampi S, Servomaa K (2009b) Correlation of foliar MT2b expression with Cd and Zn concentrations in hybrid aspen (Populus tremula x tremuloides) grown in contaminated soil. Environ Pollut 157:922–930

    Article  PubMed  CAS  Google Scholar 

  • Huang GY, Wang YS (2009) Expression analysis of type 2 metallothionein gene in mangrove species (Bruguiera gymnorrhiza) under heavy metal stress. Chemosphere 77:1026–1029

    Article  PubMed  CAS  Google Scholar 

  • Huang GY, Wang YS (2010) Expression and characterization analysis of type 2 metallothionein from grey mangrove species (Avicennia marina) in response to metal stress. Aquat Toxicol 99:86–92

    Article  PubMed  CAS  Google Scholar 

  • Hussain S, Slikker W, Syed FA (1996) Role of metallothionein and other antioxidants in scavenging superoxide radicals and their possible role in neuroprotection. Neurochem Int 29:145–152

    Article  PubMed  CAS  Google Scholar 

  • Jain M, Nijhawan A, Arora R, Agarwal P, Ray S, Sharma P, Kapoor S, Tyagi AK, Khurana JP (2007) F-Box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiol 143:1467–1483

    Article  PubMed  CAS  Google Scholar 

  • Jain M, Ghanashyam C, Bhattacharjee A (2010) Comprehensive expression analysis suggests overlapping and specific roles of rice glutathione S-transferase genes during development and stress responses. BMC Genomics 73:1471–216

    Google Scholar 

  • Jin S, Cheng Y, Guan Q, Liu D, Takano T, Liu S (2006) A metallothionein-like protein of rice (rgMT) functions in E. coli and its gene expression is induced by abiotic stresses. Biotechnol Lett 28:1749–1753

    Article  PubMed  CAS  Google Scholar 

  • Kesari R, Trivedi PK, Nath P (2007) Ethylene-induced ripening in banana evokes expression of defense and stress related genes in fruit tissue. Postharvest Biol Technol 46:54–63

    Article  Google Scholar 

  • Kumar S, Asif MH, Chakrabarty D, Tripathi RD, Trivedi PK (2011) Differential expression and alternative splicing of rice sulphate transporter family members regulate sulphur status during plant growth, development and stress conditions. Func Integr Genomics 11:259–273

    Article  CAS  Google Scholar 

  • Lane B, Kajioka R, Kennedy T (1987) The wheat germ Ec protein is a Zn-containing metallothionein. Biochem Cell Biol 65:1001–1005

    Article  CAS  Google Scholar 

  • Lareau LF, Inada M, Green RE, Wengrod JC, Brenner SE (2007) Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements. Nature 446:926–929

    Article  PubMed  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Lewis BP, Green RE, Brenner SE (2003) Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc Natl Acad Sci U S A 100:189–192

    Article  PubMed  CAS  Google Scholar 

  • Li C, Wang WH (2001) Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci U S A 98:31–36

    Article  PubMed  CAS  Google Scholar 

  • Li M, Xu W, Yang W, Kong Z, Xue Y (2007) Genome-wide gene expression profiling reveals conserved and novel molecular functions of the stigma in rice (Oryza sativa L.). Plant Physiol 144:1797–1812

    Article  PubMed  CAS  Google Scholar 

  • Liu JY, Lu T, Zhao NM (2000) Classification and nomenclature of plant metallothionein-like proteins based on their cysteine arrangement patterns. Acta Bot Sin 42:649–652

    CAS  Google Scholar 

  • Margoshes M, Vallee BL (1957) A cadmium protein from equine kidney cortex. J Chem Soc 79:4813–4819

    Article  CAS  Google Scholar 

  • Mir G, Domènech J, Huguet G, Guo WJ, Goldsbrough P, Atrian S, Molinas M (2004) A plant type 2 metallothionein (MT) from cork tissue responds to oxidative stress. J Exp Bot 55:2483–2493

    Article  PubMed  CAS  Google Scholar 

  • Nakajima K, Suzuki K, Otaki N, Kimura M (1991) Epitope mapping of metallothionein antibodies. Methods Enzymol 205:174–189

    Article  PubMed  CAS  Google Scholar 

  • Norton GJ, Nigar M, Williams PN, Dasgupta T, Meharg A, Price AH (2008) Rice–arsenate interactions in hydroponics: a three-gene model for tolerance. J Exp Bot 59:2277–2284

    Article  PubMed  CAS  Google Scholar 

  • Quesada V, Macknight R, Dean C, Simpson GG (2003) Auto-regulationof FCA pre- mRNA processing controls Arabidopsis thaliana flowering time. EMBO J 22:3142–3152

    Article  PubMed  CAS  Google Scholar 

  • Rai A, Tripathi P, Dwivedi S, Dubey S, Shri M, Kumar S, Tripathi PK, Dave R, Kumar A, Singh R, Adhikari B, Bag M, Tripathi RD, Trivedi PK, Chakrabarty D, Tuli R (2011) Arsenic tolerances in rice (Oryza sativa) have a predominant role in transcriptional regulation of a set of genes including sulphur assimilation pathway and antioxidant system. Chemosphere 82:986–995

    Article  PubMed  CAS  Google Scholar 

  • Razem FA, El-Kereamy A, Abrams SR, Hill RD (2006) The RNA-binding protein FC is an abscisic acid receptor. Nature 439:290–294

    Article  PubMed  CAS  Google Scholar 

  • Reddy AS (2007) Alternative splicing of pre-messenger RNAs in plants in the genomic era. Annu Rev Plant Biol 58:267–294

    Article  PubMed  CAS  Google Scholar 

  • Ribot C, Hirsch J, Balzergue S, Tharreau D, Nottéghem JL, Lebrun MH, Morel JB (2008) Susceptibility of rice to the blast fungus, Magnaporthe grisea. J Plant Physiol 165:114–124

    Article  PubMed  CAS  Google Scholar 

  • Shim KS, Cho SK, Jeung JU, Jung KW, You MK, Ok SH, Chung YS, Kang KH, Hwang HG, Choi HC, Moon HP, Shin JS (2004) Identification of fungal (Magnaporthe grisea) stress-induced genes in wild rice (Oryza minuta). Plant Cell Rep 22:599–607

    Article  PubMed  CAS  Google Scholar 

  • Shukla D, Kesari R, Mishra S, Dwivedi S, Tripathi RD, Nath P, Trivedi PK (2012) Expression of phytochelatin synthase from aquatic macrophyte Ceratophyllum demersum L. enhances heavy metal accumulation in tobacco. Plant Cell Rep. doi:10.1007/s00299-012-1283-3

  • Singh RK, Anandhan S, Singh S, Patade VY, Ahmed Z, Pande V (2011) Metallothionein-like gene from Cicer microphyllum is regulated by multiple abiotic stresses. Protoplasma 248:839–847

    Article  PubMed  CAS  Google Scholar 

  • Swarbrick PJ, Huang K, Liu G, Slate J, Press MC, Scholes JD (2008) Global patterns of gene expression in rice cultivars undergoing a susceptible or resistant interaction with the parasitic plant Striga hermonthica. New Phytol 179:515–552

    Article  PubMed  CAS  Google Scholar 

  • Tommey AM, Shi J, Lindsay WP, Urwin PE, Robinson NJ (1991) Expression of the pea gene PsMTA in E. coli: metal-binding properties of the expressed protein. FEBS Lett 292:48–52

    Article  PubMed  CAS  Google Scholar 

  • Tripathi P, Misra A, Dwivedi S, Chakrabarty D, Trivedi PK, Singh RP, Tripathi RD (2012) Differential response of oxidative stress and thiol metabolism in contrasting rice genotypes for arsenic tolerance. Ecotoxicol Environ Saf 79:189–198

    Article  PubMed  CAS  Google Scholar 

  • Tuli R, Chakrabarty D, Trivedi PK, Tripathi RD (2010) Recent advances in arsenic accumulation and metabolism in rice. Mol Breeding 26:307–323

    Article  CAS  Google Scholar 

  • Usha B, Prashanth SR, Parida A (2007) Differential expression of two metallothionein encoding genes during heavy metal stress in the mangrove species, Avicennia marina (Forsk.) Vierh. Curr Sci 93:1215–1219

    CAS  Google Scholar 

  • Usha B, Venkataraman G, Parida A (2009) Heavy metal and abiotic stress inducible metallothionein isoforms from Prosopis juliflora (SW) D.C. show differences in binding to heavy metals in vitro. Mol Genet Genomics 281:99–108

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Wang F, Cheng L, Kong F, Peng Z, Liu S, Yu X, Lu G (2011) Identification, isolation and expression analysis of auxin response factor (ARF) genes in Solanum lycopersicum. Plant Cell Rep 30:2059–2207

    Article  PubMed  CAS  Google Scholar 

  • Xue T, Li X, Zhu W, Wu C, Yang C, Zheng C (2009) Cotton metallothionein GhMT3a, a reactive oxygen species scavenger, increased tolerance against abiotic stress in transgenic tobacco and yeast. J Exp Bot 60:339–349

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Wu Y, Li Y, Ling HQ, Chu C (2009) OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Mol Biol 70:219–229

    Article  PubMed  CAS  Google Scholar 

  • Yuan J, Chen D, Ren Y, Zhang X, Zhao J (2008) Characteristic and expression analysis of a metallothionein gene, OsMT2b, down-regulated by cytokinin suggests functions in root development and seed embryo germination of rice. Plant Physiol 146:1637–1650

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Goldsbrough PB (1994) Functional homologs of fungal metallothionein genes from Arabidopsis. Plant Cell 6:875–884

    PubMed  CAS  Google Scholar 

  • Zhou GK, Xu YF, Liu JY (2005) Characterization of a rice class II metallothionein gene: tissue expression patterns and induction in response to abiotic factors. J Plant Physiol 162:686–696

    Article  PubMed  CAS  Google Scholar 

  • Zhou G, Xu Y, Li J, Yang L, Liu JY (2006) Molecular analyses of the metallothionein gene family in rice (Oryza sativa L.). J Biochem Mol Biol 39:595–606

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Director, National Botanical Research Institute, Lucknow for the facilities and for the financial support from CSIR Network Project, New Delhi, India. NG acknowledges the financial support from ICMR. PKV acknowledge the financial support from CSIR. The authors declare that they have no conflict of interest associated with this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Chakrabarty.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. S1

Possibility for tandem duplication was analysed using Vista Tools for Comparative Genomics (Frazer et al. 2004). Our analysis suggests that Os12g38010 and Os12g38051 are tandem duplication in the rice genome. (PPT 126 kb)

Supplementary Table S1

OsMT class I gene family specific primers used in the present experiment for qRT-PCR designed by using Primique online software http://cgi-www.daimi.au.dk/cgi-chili/primique/front.py. (DOC 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gautam, N., Verma, P.K., Verma, S. et al. Genome-wide identification of rice class I metallothionein gene: tissue expression patterns and induction in response to heavy metal stress. Funct Integr Genomics 12, 635–647 (2012). https://doi.org/10.1007/s10142-012-0297-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-012-0297-9

Keywords

Navigation