Skip to main content

Advertisement

Log in

Wheat defense genes in fungal (Puccinia striiformis) infection

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most important diseases of wheat worldwide. To isolate defense-related genes against the pathogen, a suppression subtractive hybridization library was constructed for an incompatible interaction. From the library, 652 sequences were determined to be unigenes, of which 31 were determined as genes involved in signal transduction and 77 were predicted to encode defense-related proteins. Expression patterns of 12 selected signal transduction and defense-related genes were determined using quantitative real-time polymerase chain reaction. Signal transduction genes started increasing their expression at 12 h post inoculation (hpi), and expressions of the most of the transport and resistance-related genes were induced at 18 hpi. The gene expression results indicate specific molecular and cellular activities during the incompatible interaction between wheat and the stripe rust pathogen. In general, the expression increase of wheat signal transduction genes soon after inoculation with the pathogen inducing various defense-related genes, including reactive oxygen species, ATP-binding cassette (ABC) transporters, pathogenesis-related proteins, and genes involved in the phenylpropanoid pathway. The activities of these defense genes work in a sequential and concerted manner to result in a hypersensitive response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Physiol Plant Mol Biol 55:373–399

    CAS  Google Scholar 

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, GomezGomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signaling cascade in Arabidopsis innate immunity. Nature 415:977–983

    Article  CAS  PubMed  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Tarver LI, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  CAS  PubMed  Google Scholar 

  • Beavn M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R, Dirkse W, Staveren MV, Stiekema W, Drost L, Ridley P, Hudson SA, Patel K, Murphy G, Piffanelli P, Wedler H, Wedler E, Wambutt R, Weitzenegger T, Pohl TM, Terryn N, Gielen J, Villarroel R, Clerck RD, Montagu MV, Lecharny A, Auborg S, Gy I, Kreis M, Lao N, Kavanagh T, Hempel S, Kotter P, Entian KD, Rieger M, Schaeffer M, Funk B, Mueller-Auer S, Silvey M, James R, Montfort A, Pons A, Puigdomenech P, Douka A, Voukelatou E, Milioni D, Hatzopoulos P, Piravandi E, Obermaier B, Hilbert H, Düsterhöft A, Moores T, Jones JDG, Eneva T, Palme K, Benes V, Rechman S, Ansorge W, Cooke R, Berger C, Delseny M, Voet M, Volckaert G, Mewes HW, Klosterman S, Schueller C, Chalwatzis N (1998) Analysis 1.9 MB of contigous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391:485–488

    Article  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  CAS  PubMed  Google Scholar 

  • Chandra A, Saxena R, Dubey A, Saxena P (2007) Change in phenylalanine ammonia lyase activity and isozyme patterns of polyphenol oxidase and peroxidase by salicylic acid leading to enhance resistance in cowpea against Rhizoctonia solani. Acta Physiol Plant 29:361–367

    Article  CAS  Google Scholar 

  • Chen XM (2005) Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici ] on wheat. Can J Plant Pathol 27:314–337

    Google Scholar 

  • Coram TE, Settles ML, Chen XM (2008a) Transcriptome analysis of high-temperature adult-plant resistance conditioned by Yr39 during the wheat-Puccinia striiformis f. sp. tritici interaction. Mol Plant Pathol 9:479–493

    Article  CAS  PubMed  Google Scholar 

  • Coram TE, Wang MN, Chen XM (2008b) Transcriptome analysis of the wheat-Puccinia striiformis f. sp. tritici interaction. Mol Plant Pathol 9:157–169

    Article  CAS  PubMed  Google Scholar 

  • Coram TE, Huang XL, Zhan GM, Settles ML, Chen XM (2009) Meta-analysis of transcripts associated with race-specific resistance to stripe rust in wheat demonstrates common induction of blue copper-binding protein, heat-stress transcription factor, pathogen-induced WIR1A protein, and ent-kaurene synthase transcripts. Funct Integr Genomics 00:000–000, Published online: doi:10.1007/s10142-009-0148-5; http://www.springerlink.com/content/213301g827331630/fulltext.pdf

    Google Scholar 

  • Diatachenko L, YF Chris lau, Campbel AP, Chenchik A, Mooadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93:6025–6030

    Article  Google Scholar 

  • Didierjean L, Frendo P, Nasser W, Genot G, Marivet J, Burkard G (1996) Heavy-metal-responsive genes in maize: identification and comparison of their expression upon various forms of biotic stress. Planta 199:1–8

    Article  CAS  PubMed  Google Scholar 

  • Dubery IA, Smit F (1994) Phenylalanine ammonialyase from cotton hypocotyls: Properties of the enzyme induced by a Verticillium dahliae phytotoxin. Biochem Biophys Acta-Protein Struct. Mol Enzymol 12:24–30

    Google Scholar 

  • Endicott JA, Ling V (1989) The biochemistry of P-glycoprotein medical multidrug resistance. Annu Rev Biochem 58:137–171

    Article  CAS  PubMed  Google Scholar 

  • Fu DL, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen XM, Sela H, Fahima T, Dubcovsky J (2009) A Kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360

    Article  CAS  PubMed  Google Scholar 

  • Gottesman M, Pastan I (1993) Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 62:385–427

    Article  CAS  PubMed  Google Scholar 

  • Greenberg J (1997) Programmed cell death in plant-pathogen interactions. Annu Rev Plant Physiol Plant Mol Biol 48:525–545

    Article  CAS  PubMed  Google Scholar 

  • Greenberg J, Yao N (2004) The role and regulation of programmed cell death in plant-pathogen interactions. Cell Microbiol 6:201–211

    Article  CAS  PubMed  Google Scholar 

  • Hammond-Kosack K, Parker J (2003) Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotechnol 14:177–193

    Article  CAS  PubMed  Google Scholar 

  • Harding SA, Roberts DM (1998) Incompatible pathogen infection results in enhanced reactive oxygen and cell death responses in transgenic tobacco expressing a hyperactive mutant calmodulin. Planta 206:253–258

    Article  CAS  Google Scholar 

  • Heath MC (2000) Hypersensitive response-related death. Plant Mol Biol 44:321–334

    Article  CAS  PubMed  Google Scholar 

  • Higgins CF (1992) ABC-transporters: from microorganisms to man. Annu Rev Cell Biol 8:67–113

    Article  CAS  PubMed  Google Scholar 

  • Jonak C, Kiegerl S, Ligterink W, Barker PJ, Huskisson N, Sand Hirt H (1996) Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought. Proc Natl Acad Sci USA 93:11274–11279

    Article  CAS  PubMed  Google Scholar 

  • Kang ZS, Shang HS, Li ZQ (1993) Fluorescence staining technique of wheat rust tissue. Plant Prot 2:27, in Chinese

    Google Scholar 

  • Kang ZS, Huang LL, Buchenauer H (2002) Ultrastructural changes and localization of lignin and callose in compatible and incompatible interactions between wheat and Puccinia striiformis. J Plant Diseases and Protection 109:25–37

    CAS  Google Scholar 

  • Kang ZS, Huang LL, Buchenauer H (2003a) Subcellular localization of chitinase and B-1, 3-glucanase in compatible and incompatible interactions between wheat and Puccinia striiformis f.sp. tritici. J Plant Diseases and Protection 110:170–183

    CAS  Google Scholar 

  • Kang ZS, Wang Y, Huang LL, Wei GR, Zhao J (2003b) Histology and ultrastructure of incompatible combination between Puccinia striiformis and wheat cultivars with low reaction type resistance. Scientia Agricultura Sinica 36:1026–1031 (in Chinese)

    Google Scholar 

  • Klein M, Weissenbock G, Dufaud A, Gaillard C, Kreuz K, Martinoia E (1996) Different energization mechanisms drive the vacuolar uptake of a flavonoid glucoside and a herbicide glucoside. J Biol Chem 271:29666–29671

    Article  CAS  PubMed  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    Article  CAS  PubMed  Google Scholar 

  • Lamb C, Dixon R (1997) The oxidative burst in plant disease response. Annu Rev Plant Physiol Plant Mol Biol 48:251–275

    Article  CAS  PubMed  Google Scholar 

  • Li ZQ, Zeng SM (2002) Wheat rust in China. Beijing. China Agriculture Press, Beijing

    Google Scholar 

  • Line RF, Chen XM (1995) Successes in breeding for and managing durable resistance to wheat rusts. Plant Dis 79:1254–1255

    Google Scholar 

  • Ma Q, Shang HS (2004) Ultrastructural analysis of the interaction between Puccinia striiformis f.sp. tritici and wheat after thermal induction of resistance. J. Plant Pathol 86:19–26

    Google Scholar 

  • MacDonald MJ, D'Cunha GB (2007) A modern view of phenylalanine ammonia lyase. Biochem Cell Biol 85:273–282

    Article  CAS  PubMed  Google Scholar 

  • McIntosh RA, Bariana HS, Park RF, Wellings CR (2001) Aspects of wheat rust research in Australia. Euphytica 119:115–120

    Article  Google Scholar 

  • Nagarathna KC, Shetty SA, Shetty HS (1993) Phenylalanine ammonia lyase activity in pearl millet seedlings and its relation to downy mildew disease resistance. J Exp Bot 265:1291–1296

    Article  Google Scholar 

  • Pastore D, Laus MN, Fonzo DN, Passarella S (2002) Reactive oxygen species inhibit the succinate oxidation-supported generation of membrane potential in wheat mitochondria. FEBS Lett 516:15–19

    Article  CAS  PubMed  Google Scholar 

  • Rostoks N, Schmierer D, Kudrna D, Kleinhofs A (2003) Barley putative hypersensitive induced reaction genes: genetic mapping, sequence analyses and differential expression in disease lesion mimic mutants. Theor Appl Genet 107:1094–1101

    Article  CAS  PubMed  Google Scholar 

  • Scheideler M, Schlaich NL, Fellenberg K, Beissbarth T, Hauser NC, Vingron M, Slusarenko AJ, Hoheisel JD (2002) Monitoring the switch from housekeeping to pathogen defense metabolism in Arabidopsis thaliana using cDNA arrays. J Biol Chem 277:10555–10561

    Article  CAS  PubMed  Google Scholar 

  • Shi ZX, Chen XM, Line RF, Leung H, Wellings CR (2001) Development of resistance gene analog polymorphism markers for the Yr9 gene resistance to wheat stripe rust. Genome 44:509–516

    Article  CAS  PubMed  Google Scholar 

  • Stakman EC, Stewart DM, Loegering WQ (1962) Identification of physiological races of Puccinia graminis var. tritici. USDA-ARS, Washington, DC

    Google Scholar 

  • Steiner B, Kurz H, Lemmens M, Buerstmayr H (2009) Differential gene expression of related wheat lines with contrasting levels of head blight resistance after Fusarium graminearum inoculation. Theor Appl Genet 118:753–764

    Article  CAS  PubMed  Google Scholar 

  • Stubbs RW (1985) Stripe rust. In: Roelfs AP, Bushnell WR (eds) The Cereal Rusts. Vol. II. Diseases, Distribution, Epidemiology, and Control. Academic, Orlando, pp 62–101

    Google Scholar 

  • Wang CF, Huang LL, Buchenauer H, Han QM, Zhang HC, Kang ZS (2007) Histochemical studies on the accumulation of reactive oxygen species (O2- and H2O2) in the incompatible and compatible interaction of wheat-Puccinia striiformis f. sp. tritici. Physiol Mol Plant Pathol 71:230–239

    Article  CAS  Google Scholar 

  • Yan GP, Chen XM, Line RF, Wellings CR (2003) Resistance gene-analog polymorphism markers co-segregating with the Yr5 gene for resistance to wheat stripe rust. Theor Appl Genet 106:636–643

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported financially by the National Basic Research Program of China (No. 2006CB101901), the earmarked fund for Modern Agro-Industry Technology Research System, the Program for Changjiang Scholars and Innovative Research Team in University, Ministry of Education of China (No. 200558), the Nature Science Foundation of China (No. 30930064), and the 111 Project from Ministry of Education of China (B07049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhensheng Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, X., Wang, X., Wang, C. et al. Wheat defense genes in fungal (Puccinia striiformis) infection. Funct Integr Genomics 10, 227–239 (2010). https://doi.org/10.1007/s10142-010-0161-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-010-0161-8

Keywords

Navigation