Skip to main content
Log in

Drought response in the spikes of barley: gene expression in the lemma, palea, awn, and seed

Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

The photosynthetic organs of the barley spike (lemma, palea, and awn) are considered resistant to drought. However, there is little information about gene expression in the spike organs under drought conditions. We compared response of the transcriptome of the lemma, palea, awn, and seed to drought stress using the Barley1 Genome Array. Barley plants were exposed to drought treatment for 4 days at the grain-filling stage by withholding water. At the end of the stress, relative water content of the lemma, palea, and awn dropped from 85% to 60%. Nevertheless, the water content of the seed only decreased from 89% to 81%. Transcript abundance followed the water status of the spike organs; the awn had more drought-regulated genes followed by lemma and palea, and the seed showed very little change in gene expression. Despite expressing more drought-associated genes, many genes for amino acid, amino acid derivative, and carbohydrate metabolism, as well as for photosynthesis, respiration, and stress response, were down-regulated in the awn compared with the lemma, palea, and seed. This suggests that the lemma and the palea are more resistant to drought stress compared with the awn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Abebe T, Skadsen RW, Kaeppler HF (2004) Cloning and identification of highly expressed genes in barley lemma and palea. Crop Sci 44:942–950

    Article  CAS  Google Scholar 

  • Abebe T, Wise RP, Skadsen RW (2009) Comparative transcriptional profiling established the awn as the major photosynthetic organ of the barley spike while the lemma and the palea primarily protect the seed. Plant Genome (in press)

  • Almagro L, Gómez Ros LV, Belchi-Navarro S, Bru R, Ros Barceló A, Pedreño MA (2009) Class III peroxidases in plant defence reactions. J Exp Bot 60:377–390

    Article  CAS  PubMed  Google Scholar 

  • Araus JL, Brown HR, Febrero A, Bort J, Serret MD (1993) Ear photosynthesis, carbon isotope discrimination and the contribution of respiratory CO2 to differences in grain mass in durum wheat. Plant Cell Environ 16:383–392

    Article  CAS  Google Scholar 

  • Bass HW, Krawetz JE, O'Brian GR, Zinselmeier C, Habben JE, Boston RS (2004) Maize ribosome-inactivating proteins (RIPs) with distinct expression patterns have similar requirements for proenzyme activation. J Exp Bot 55:2219–2233

    Article  CAS  PubMed  Google Scholar 

  • Blum A (1985) Photosynthesis and transpiration in leaves and ears of wheat and barley varieties. J Exp Bot 36:432–440

    Article  Google Scholar 

  • Bouche N, Fromm H (2004) GABA in plants: just a metabolite? Trends Plant Sci 9:110–115

    Article  CAS  PubMed  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  PubMed  CAS  Google Scholar 

  • Boyer JS, Westgate ME (2004) Grain yields with limited water. J Exp Bot 55:2385–2394

    Article  CAS  PubMed  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158–1203

    Google Scholar 

  • Cameron DK, Teece MA, Smart LB (2006) Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol 140:176–183

    Article  CAS  PubMed  Google Scholar 

  • Caspi R, Foerster H, Fulcher CA, Kaipa P, Krummenacker M, Latendresse M, Paley S, Rhee SY, Rhee SY, Shearer AG, Tissier C, Zhang P, Karp PD (2008) MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res 34:D511–D516

    Article  CAS  Google Scholar 

  • Castrillo M, Fernandez D, Calcagno AM, Trujillo I, Guenni L (2001) Responses of ribulose-1, 5-bisphosphate carboxylase, protein content, and stomatal conductance to water deficit in maize, tomato, and bean. Photosynthetica 39:221–226

    Article  CAS  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2007) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  CAS  Google Scholar 

  • Chen H, McCaig BC, Melotto M, He SY, Howe GA (2004) Regulation of plant arginase by wounding, jasmonate and the phytotoxin coronatine. J Biol Chem 279:45998–46007

    Article  CAS  PubMed  Google Scholar 

  • Chirgwin JM, Prybyla A, MacDonald RJ, Rutter WJ (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochem 18:5294–5299

    Article  CAS  Google Scholar 

  • Close TJ, Wanamaker S, Caldo RA, Turner SM, Ashlock DA, Dickerson JA, Wing RA, Muehlbauer GJ, Kleinhofs A, Wise RP (2004) A new resource for cereal genomics: 22K barley GeneChip comes of age. Plant Physiol 134:960–968

    Article  CAS  PubMed  Google Scholar 

  • Danuta C, Romualda K, Agnieszka C, Marta J (2008) Influence of long-term drought stress on osmolyte accumulation in sugar beet (Beta vulgaris L.) plants. Acta Physiol Plant 30:679–687

    Article  Google Scholar 

  • Duffus CM, Cochrane MP (1993) Formation of the barley grain—morphology, physiology, and biochemistry. In: MacGregor AW, Bhatty RS (eds) Barley: chemistry and technology. American Association of Cereal Chemists, St. Paul, pp 31–72

    Google Scholar 

  • Fait A, Yellin A, Fromm H (2004) GABA shunt deficiencies and accumulation of reactive oxygen intermediates: insight from Arabidopsis mutants. FEBS Lett 579:415–420

    Article  CAS  Google Scholar 

  • Fan L, Linker R, Gepstein S, Tanimoto E, Yamamoto R, Neumann PM (2006) Progressive inhibition by water deficit of cell wall extensibility and growth along the elongation zone of maize roots is related to increased lignin metabolism and progressive stelar accumulation of wall phenolics. Plant Physiol 140:603–612

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Medrano H (2002) Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann Bot 89:183–189

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    Article  CAS  Google Scholar 

  • Giraud E, Ho LHM, Clifton R, Carroll A, Estavillo G, Tan Y-F, Howell KA, Ivanova A, Pogson BJ, Millar AH, Whelan J (2008) The absence of alternative oxidase1a in Arabidopsis results in acute sensitivity to combined light and drought stress. Plant Physiol 147:595–610

    Article  CAS  PubMed  Google Scholar 

  • Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talón M, Dopazo J, Conesa A (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36:3420–3435

    Article  PubMed  CAS  Google Scholar 

  • Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. Biochem J 388:151–157

    Article  CAS  PubMed  Google Scholar 

  • Guo P, Baum M, Grando S, Ceccarelli S, Bai G, Li R, von Korff M, Varshney RK, Graner A, Valkoun J (2009) Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. J Exp Bot. doi:10.1093/jxb/erp194

    Google Scholar 

  • Ho LHM, Giraud E, Uggalla V, Lister R, Clifton R, Glen A, Thirkettle-Watts D, Van Aken O, Whelan J (2008) Identification of regulatory pathways controlling gene expression of stress-responsive mitochondrial proteins in Arabidopsis. Plant Physiol 147:1858–1873

    Article  CAS  PubMed  Google Scholar 

  • Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438

    Article  CAS  PubMed  Google Scholar 

  • Hörtensteiner S (2006) Chlorophyll degradation during senescence. Annu Rev Plant Biol 57:55–77

    Article  PubMed  CAS  Google Scholar 

  • Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Abidopsis thaliana. Plant Cell Physiol 45:712–722

    Article  CAS  PubMed  Google Scholar 

  • Kishor KPB, Hong Z, Miao GH, Hu CAA, Verma DPS (1995) Overexpression of ∆-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    CAS  PubMed  Google Scholar 

  • Nettleton D (2006) A discussion of statistical methods for design and analysis of microarray experiments for plant scientists. Plant Cell 18:2112–2121

    Article  CAS  PubMed  Google Scholar 

  • Ober E, Sharp RE (2007) Regulation of root growth responses to water deficit. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, The Netherlands, pp 33–53

    Chapter  Google Scholar 

  • Ober ES, Setter TL, Madison JT, Thompson JF, Shapiro PS (1991) Influence of water deficit on maize endosperm development: enzyme activities and RNA transcripts of starch and zein synthesis, abscisic acid, and cell division. Plant Physiol 97:154–164

    Article  CAS  PubMed  Google Scholar 

  • Paul MJ, Primavesi LF, Jhurreea D, Zhang Y (2008) Trehalose metabolism and signaling. Annual Rev Plant Biol 59:417–441

    Article  CAS  Google Scholar 

  • Rachmilevitch S, DaCosta M, Huang B (2006) Physiological and biochemical indicators for stress tolerance. In: Huang B (ed) Plant–environment interactions, 3rd edn. CRC Press, Boca Raton, pp 321–355

    Google Scholar 

  • Roosens NH, Thu TT, Iskandar HM, Jacobs M (1998) Isolation of the ornithine-delta-aminotransferase cDNA and effect of salt stress on its expression in Arabidopsis thaliana. Plant Physiol 117:263–271

    Article  CAS  PubMed  Google Scholar 

  • Saini HS, Westgate ME (2000) Reproductive development in grain crops during drought. Adv Agron 68:59–96

    Article  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CΤ method. Nature protocols 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  CAS  PubMed  Google Scholar 

  • Setter TL, Flannigan BA, Melkonian J (2001) Loss of kernel set due to water deficit and shade in maize: carbohydrate supplies, abscisic acid, and cytokinins. Crop Sci 41:1530–1540

    CAS  Google Scholar 

  • Shen L, Gong J, Caldo RA, Nettleton D, Cook D, Wise RP, Dickerson JA (2005) BarleyBase—an expression profiling database for plant genomics. Nucleic Acids Res 33:D614–D618

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N (1998) Plant resistance to environmental stress. Curr Opin Biotechnol 9:214–219

    Article  CAS  PubMed  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci 100:9440–9445

    Article  CAS  PubMed  Google Scholar 

  • Talame V, Ozturk NZ, Bohnert HJ, Tuberosa R (2006) Barley transcript profiles under dehydration shock and drought stress treatments: a comparative analysis. J Exp Bot 58:229–240

    Article  PubMed  Google Scholar 

  • Tambussi EA, Bort J, Guiamet JJ, Nogúes S, Araus JL (2007) The photosynthetic role of ears in C3 cereals: metabolism, water use efficiency and contribution to grain yield. Crit Rev Plant Sci 26:1–16

    Article  CAS  Google Scholar 

  • Tassonia A, Franceschettia M, Bagn N (2008) Polyamines and salt stress response and tolerance in Arabidopsis thaliana flowers. Plant Physiol Biochem 46:607–613

    Article  CAS  Google Scholar 

  • Tommasini L, Svensson JT, Rodriguez EM, Wahid A, Malatrasi M, Kato K, Wanamaker S, Resnik J, Close TJ (2008) Dehydrin gene expression provides an indicator of low temperature and drought stress: transcriptome-based analysis of barley (Hordeum vulgare L.). Funct Integr Genomics 8:387–405

    Article  CAS  PubMed  Google Scholar 

  • Umbach AL, Fiorani F, Siedow JN (2005) Characterization of transformed Arabidopsis with altered alternative oxidase levels and analysis of effects on reactive oxygen species in tissues. Plant Physiol 139:1806–1820

    Article  CAS  PubMed  Google Scholar 

  • Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Zeng L, Wanamaker SI, Mandal J, Xu J, Cui X, Close TJ (2005) Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol 139:822–835

    Article  CAS  PubMed  Google Scholar 

  • Westgate ME (1994) Water status and development of the maize endosperm and embryo during drought. Crop Sci 34:76–83

    Google Scholar 

  • Yang J, Zhang J, Liu K, Wang Z, Liu L (2007) Involvement of polyamines in the drought resistance of rice. J Exp Bot 58:1545–1555

    Article  CAS  PubMed  Google Scholar 

  • Yeats TH, Rose JKC (2008) The biochemistry and biology of extracellular plant lipid-transfer proteins (LTPs). Protein Sci 17:191–198

    Article  CAS  PubMed  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

  • Zinselmeier C, Sun Y, Helentjaris T, Beatty M, Yang S, Smith H, Habben J (2002) The use of gene expression profiling to dissect the stress sensitivity of reproductive development in maize. Field Crops Res 75:111–121

    Article  Google Scholar 

Download references

Acknowledgments

We thank Diveena Vijeyandran, Aaron Walck, Ng Eng Hwa, Emily Jackson, and Justin Wilkins for their help on sample collection and RNA extraction and Matthew Moscou for initial analysis of the data set. We are grateful to Billie Hemmer and Stephanie Witt for assistance in growing plants. We thank Dr. Tesfaye Mersha for his advice on statistical analysis. This work was supported by the Board of Regents of the State of Iowa and the Office of Sponsored Programs, the Graduate College, the College of Natural Sciences and the Department of Biology of the University of Northern Iowa, Cedar Falls, Iowa. We thank Dr. Ronald W. Skadsen for his valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tilahun Abebe.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

Supplementary Figure S1

Organ-specific expression of drought-regulated genes in the spike (DOC 74 kb)

Supplementary Table S1

Primer sequences for real-time PCR (DOC 76 kb)

Supplementary Table S2

RWC of drought-stressed lemma, palea, awn, and seed of barley (DOC 73 kb)

Supplementary Table S3

Expression profile of genes associated with major GO biological process categories in drought-stressed organs of the barley spike (XLS 205 kb)

Supplementary Table S4

Comparison of gene expression in the spike organs using the Barley1 GeneChip and real-time PCR (DOC 75 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abebe, T., Melmaiee, K., Berg, V. et al. Drought response in the spikes of barley: gene expression in the lemma, palea, awn, and seed. Funct Integr Genomics 10, 191–205 (2010). https://doi.org/10.1007/s10142-009-0149-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-009-0149-4

Keywords

Navigation