Skip to main content
Log in

A comparative genomic analysis of ESTs from Ustilago maydis

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

A large-scale comparative genomic analysis of unisequence sets obtained from an Ustilago maydis EST collection was performed against publicly available EST and genomic sequence datasets from 21 species. We annotated 70% of the collection based on similarity to known sequences and recognized protein signatures. Distinct grouping of the ESTs, defined by the presence or absence of similar sequences in the species examined, allowed the identification of U. maydis sequences present only (1) in fungal species, (2) in plants but not animals, (3) in animals but not plants, or (4) in all three eukaryotic lineages assessed. We also identified 215 U. maydis genes that are found in the ascomycete but not in the basidiomycete genome sequences searched. Candidate genes were identified for further functional characterization. These include 167 basidiomycete-specific sequences, 58 fungal pathogen-specific sequences (including 37 basidiomycete pathogen-specific sequences), and 18 plant pathogen-specific sequences, as well as two sequences present only in other plant pathogen and plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agrios GN (1997) Plant pathology, 4th edn. San Diego Academic, San Diego

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    CAS  PubMed  Google Scholar 

  • Apweiler R, Attwood TK, Bairoch A, Bateman A, Birney E, Biswas M, Bucher P, Cerutti L, Corpet F, et al (2001) The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucleic Acids Res 29:37–40

    Article  CAS  PubMed  Google Scholar 

  • Banuett F (1995) Genetics of Ustilago maydis, a fungal pathogen that induces tumors in maize. Annu Rev Genet 29:179–208

    Article  CAS  PubMed  Google Scholar 

  • Banuett F, Herskowitz I (1989) Different a alleles of Ustilago maydis are necessary for maintenance of filamentous growth but not for meiosis. Proc Natl Acad Sci USA 86:5878–5882

    Google Scholar 

  • Boguski MS, Tolstoshev CM, Bassett DE Jr (1994) Gene discovery in dbEST. Science 265:1993–1994

    CAS  PubMed  Google Scholar 

  • Braun EL, Halpern AL, Nelson MA, Natvig DO (2000) Large-scale comparison of fungal sequences information: mechanisms of innovation in Neurospora crassa and gene loss in Saccharomyces cerevisiae. Genome Res 10:416–430

    Article  CAS  PubMed  Google Scholar 

  • Deeks MJ, Hussy PJ, Davies B (2002) Formins: intermediates in signal-transduction cascades that affect cyskeletal reorganization. Trends Plant Sci 7:492–498

    Article  CAS  PubMed  Google Scholar 

  • Doolittle WF (1998) You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet 14:307–311

    Article  CAS  PubMed  Google Scholar 

  • Graveley BR (2000) Sorting out the complexity of SR protein functions. RNA 6:1197–1211

    Article  CAS  PubMed  Google Scholar 

  • Henikoff S, Henikoff J (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci USA 89:10915–10919

    CAS  PubMed  Google Scholar 

  • Hoffmann T, Golz C, Schieder O (1994) Foreign DNA sequences are received by a wild-type strain of Aspergillus niger after co-culture with transgenic higher plants. Curr Genet 27:70–76

    CAS  PubMed  Google Scholar 

  • Holst-Jensen A, Vaage M, Schumacher T, Johansen S (1999) Structural characteristics and possible horizontal transfer of group I introns between closely related plant pathogenic fungi. Mol Biol Evol 16:114–126

    CAS  PubMed  Google Scholar 

  • Kamoun S, Hraber P, Sobral B, Nuss D, Govers F (1999) Initial assessment of gene diversity for the oomycete pathogen Phytophthora infestans based on expressed sequences. Fungal Genet Biol 28:94–106

    Article  CAS  PubMed  Google Scholar 

  • Kämper J, Weinzierl G, Brachmann A, Feldbrügge M, Basse C, Steinberg G, Kahmann R, Friedrich G, Vollenbroich V, Koopmann E, et al (2001) The Ustilago maydis sequencing project. Fungal Genet Newsl 48 [Suppl]:500

    Google Scholar 

  • Karlsson M, Olson A, Stenlid J (2003) Expressed sequences from the basidiomycetous tree pathogen Heterobasidion annosum during early infection of scots pine. Fungal Genet Biol 39:51–59

    Article  CAS  PubMed  Google Scholar 

  • Kay BK, Williamson MP, Sudol M (2000) The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB J 14:231–241

    CAS  PubMed  Google Scholar 

  • Keogh RS, Seoighe C, Wolfe KH (1998) Evolution of gene order and chromosome number in Saccharomyces, Kluyveromyces and related fungi. Yeast 14:443–457

    Article  CAS  PubMed  Google Scholar 

  • Keon J, Bailey A, Hargreaves J (2000) A group of expressed cDNA sequences from the wheat fungal leaf blotch pathogen, Mycosphaerella graminicola (Septoria tritici). Fungal Genet Biol 29:118–133

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Ahn IP, Lee YH (2001) Analysis of genes expressed during rice–Magnaporthe grisea interactions. Mol Plant Microbe Interact 14:1340–1346

    CAS  PubMed  Google Scholar 

  • Kocks C (1994) Intracellular motility. Profilin puts pathogens on the actin drive. Curr Biol 4:465–468

    Article  CAS  PubMed  Google Scholar 

  • Kruger WM, Pritsch C, Chao S, Muehlbauer GJ (2002) Functional and comparative bioinformatic analysis of expressed genes from wheat spikes infected with Fusarium graminearum. Mol Plant Microbe Interact 15:445–455

    CAS  PubMed  Google Scholar 

  • Lai MC, Kuo HW, Chang WC, Tarn WY (2003) A novel splicing regulator shares a nuclear import pathway with SR proteins. EMBO J 22:1359–1369

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Galagan J, Calvo S, Nielsen C, Elkins T, Barrett R, Wong M, Lander E, Nusbaum C, Birren B (2003) The fungal genome initiative. Fungal Genet Newsl 50 [Suppl]:300

    Google Scholar 

  • Martinez-Espinoza AD, Garcia-Pedrajas MD, Gold SE (2002) The Ustilaginales as plant pests and model systems. Fungal Genet Biol 35:1–20

    Article  CAS  PubMed  Google Scholar 

  • Mata J, Bahler J (2003) Correlations between gene expression and gene conservation in fission yeast. Genome Res 13:2686–2690

    Article  CAS  PubMed  Google Scholar 

  • Matthews JM, Sunde M (2002) Zinc fingers-folds for many occasions. IUBMB Life 54(6):351–355

    Article  CAS  PubMed  Google Scholar 

  • Mount DW (2001) Bioinformatics: sequence and genome analysis. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 495–497

    Google Scholar 

  • Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Barrell D, Bateman A, Binns D, Biswas M, Bradley P, Bork P, et al (2003) The InterPro Database, 2003 brings increased coverage and new features. Nucleic Acids Res 31:315–318

    Article  CAS  PubMed  Google Scholar 

  • Neumann MJ, Dobinson KF (2003) Sequence tag analysis of gene expression during pathogenic growth and microsclerotia development in the vascular wilt pathogen Verticillium dahliae. Fungal Genet Biol 38:54–62

    Article  CAS  PubMed  Google Scholar 

  • Nugent KG, Choffe K, Saville BJ (2004) Gene expression during Ustilago maydis diploid filamentous growth: EST library creation and analyses. Fungal Genet Biol 41(3):349–360

    Article  CAS  PubMed  Google Scholar 

  • Pelletier R, Krasilnikova MM, Samadashwily GM, Lahue R, Mirkin SM (2003) Replication and expansion of trinucleotide repeats in yeast. Mol Cell Biol 23:1349–1357

    Article  CAS  PubMed  Google Scholar 

  • Provart N, Zhu T (2003) A browser-based functional classification SuperViewer for Arabidopsis genomics. Curr Comput Mol Biol 2003:271–272

    Google Scholar 

  • Qutob D, Hraber PT, Sobral BW, Gijzen M (2000) Comparative analysis of expressed sequences in Phytophthora sojae. Plant Physiol 123:243–254

    Article  CAS  PubMed  Google Scholar 

  • Rosewich UL, Kistler HC (2000) Role of horizontal gene transfer in the evolution of fungi. Annu Rev Phytopathol 38:325–363

    Article  CAS  PubMed  Google Scholar 

  • Rubin GM, Yandell MD, Wortman JR, Gabor Miklos GL, Nelson CR, Hariharan IK, Fortini ME, Li PW, Apweiler R, Fleischmann W, et al (2000) Comparative genomics of the eukaryotes. Science 287:2204–2215

    Article  CAS  PubMed  Google Scholar 

  • Sacadura NT, Saville BJ (2003) Gene expression and EST analyses of Ustilago maydis germinating teliospores. Fungal Genet Biol 40(1):47–64

    Article  CAS  PubMed  Google Scholar 

  • Saville BJ, Leong SA (1992) The molecular biology of pathogenesis in Ustilago maydis. In: Setlow JK (ed) Genetic engineering: principles and methods, vol 14. Plenum, New York

    Google Scholar 

  • Seoighe C, Federspiel N, Jones T, Hansen N, Bivolarovic V, Surzycki R, Tamse R, Komp C, Huizar L, Davis RW, et al (2000) Prevalence of small inversions in yeast gene order evolution. Proc Natl Acad Sci USA 97:14433–14437

    Article  CAS  PubMed  Google Scholar 

  • Skinner W, Keon J, Hargreaves J (2001) Gene information for fungal pathogens from expressed sequences. Curr Opin Microbiol 4:381–386

    Article  CAS  PubMed  Google Scholar 

  • Soanes DM, Skinner W, Keon J, Hargreaves J, Talbot NJ (2002) Genomics of phytopathogenic fungi and the development of bioinformatic resources. Mol Plant Microbe Interact 15:421–427

    CAS  PubMed  Google Scholar 

  • Swann EC, Taylor JW (1993) Higher taxa of basidiomycetes: an 18S rRNA gene perspective. Mycologia 85:923–936

    CAS  Google Scholar 

  • Thomas SW, Rasmussen SW, Glaring MA, Rouster JA, Christiansen SK, Oliver RP (2001) Gene identification in the obligate fungal pathogen Blumeria graminis by expressed sequence tag analysis. Fungal Genet Biol 33:195–211

    Article  CAS  PubMed  Google Scholar 

  • Trail F, Xu J, San Miguel P, Halgren RG, Corby Kistler H (2003) Analysis of expressed sequence tags from Gibberella zeae (anamorph Fusarium graminearum). Fungal Genet Biol 38:187–197

    Article  PubMed  Google Scholar 

  • Vaughn JC, Mason MT, Sper-Whitis GL, Kulman P, Palmer JD (1995) Fungal origin by horizontal transfer of a plant mitochondrial group I intron in the chimeric coxI gene of Peperomia. J Mol Evol 41:563–572

    CAS  PubMed  Google Scholar 

  • Walker DR, Koonin EV (1997) SEALS: a system for easy analysis of lots of sequences. Proc Int Conf Intell Syst Mol Biol 5:333–339

    CAS  PubMed  Google Scholar 

  • Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708–713

    Article  CAS  PubMed  Google Scholar 

  • Wolven AK, Belmont LD, Mahoney NM, Almo SC, Drubin DG (2000) In vivo importance of actin nucleotide exchange catalyzed by profilin. J Cell Biol 150:895–904

    Article  CAS  PubMed  Google Scholar 

  • Yoder OC, Turgeon BG (2001) Fungal genomics and pathogenicity. Curr Opin Plant Biol 4:315–321

    Article  CAS  PubMed  Google Scholar 

  • Zdobnov EM, Apweiler R (2001) InterProScan: an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17:847–848

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the assistance of Kristen Choffe in the creation of cDNA libraries and sequencing. Funding provided by NSERC Canada to B. J. Saville.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry J. Saville.

Additional information

Supplemental Excel Table 1 used for analysis and the derivation of Fig. 3 as well as supplemental Tables 2 and 3 are available at http://www.botany.utoronto.ca/ResearchLabs/ProvartLab/ustilago/

All ESTs used in this analysis have been submitted to GenBank. The accession numbers are CF638289–CF645747, CF663122–CF663127, and CD487847–CD490309 (Supplemental Table 3)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Austin, R., Provart, N.J., Sacadura, N.T. et al. A comparative genomic analysis of ESTs from Ustilago maydis. Funct Integr Genomics 4, 207–218 (2004). https://doi.org/10.1007/s10142-004-0118-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-004-0118-x

Keywords

Navigation