Skip to main content
Log in

Stress fractures: pathophysiology, clinical presentation, imaging features, and treatment options

  • Review Article
  • Published:
Emergency Radiology Aims and scope Submit manuscript

Abstract

Stress fracture, in its most inclusive description, includes both fatigue and insufficiency fracture. Fatigue fractures, sometimes equated with the term “stress fractures,” are most common in runners and other athletes and typically occur in the lower extremities. These fractures are the result of abnormal, cyclical loading on normal bone leading to local cortical resorption and fracture. Insufficiency fractures are common in elderly populations, secondary to osteoporosis, and are typically located in and around the pelvis. They are a result of normal or traumatic loading on abnormal bone. Subchondral insufficiency fractures of the hip or knee may cause acute pain that may present in the emergency setting. Medial tibial stress syndrome is a type of stress injury of the tibia related to activity and is a clinical syndrome encompassing a range of injuries from stress edema to frank-displaced fracture. Atypical subtrochanteric femoral fracture associated with long-term bisphosphonate therapy is also a recently discovered entity that needs early recognition to prevent progression to a complete fracture. Imaging recommendations for evaluation of stress fractures include initial plain radiographs followed, if necessary, by magnetic resonance imaging (MRI), which is preferred over computed tomography (CT) and bone scintigraphy. Radiographs are the first-line modality and may reveal linear sclerosis and periosteal reaction prior to the development of a frank fracture. MRI is highly sensitive with findings ranging from periosteal edema to bone marrow and intracortical signal abnormality. Additionally, a brief description of relevant clinical management of stress fractures is included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Breithaupt M (1855) The pathology of the human foot [in German]. Medizin Zeitung 24:169–175

    Google Scholar 

  2. Pepper M, Akuthota V, McCarty EC (2006) The pathophysiology of stress fractures. Clin Sports Med 25(1):1–16. doi:10.1016/j.csm.2005.08.010, vii

    Article  PubMed  Google Scholar 

  3. Rosen CJ, American Society for Bone and Mineral Research (2008) Primer on the metabolic bone diseases and disorders of mineral metabolism, 7th edn. American Society for Bone and Mineral Research, Washington, D.C

  4. Simon SR, American Academy of Orthopaedic Surgeons (1994) Orthopaedic basic science. American Academy of Orthopaedic Surgeons, Rosemont, Ill

    Google Scholar 

  5. Chamay A, Tschantz P (1972) Mechanical influences in bone remodeling. Experimental research on Wolff’s law. J Biomech 5(2):173–180

    Article  CAS  PubMed  Google Scholar 

  6. Daffner RH, Pavlov H (1992) Stress fractures: current concepts. AJR Am J Roentgenol 159(2):245–252. doi:10.2214/ajr.159.2.1632335

    Article  CAS  PubMed  Google Scholar 

  7. Krestan C, Hojreh A (2009) Imaging of insufficiency fractures. Eur J Radiol 71(3):398–405. doi:10.1016/j.ejrad.2008.04.059

    Article  PubMed  Google Scholar 

  8. Kadel NJ, Teitz CC, Kronmal RA (1992) Stress fractures in ballet dancers. Am J Sports Med 20(4):445–449

    Article  CAS  PubMed  Google Scholar 

  9. Bennell KL, Malcolm SA, Thomas SA, Wark JD, Brukner PD (1996) The incidence and distribution of stress fractures in competitive track and field athletes. A twelve-month prospective study. Am J Sports Med 24(2):211–217

    Article  CAS  PubMed  Google Scholar 

  10. Bennell KL, Malcolm SA, Thomas SA, Reid SJ, Brukner PD, Ebeling PR, Wark JD (1996) Risk factors for stress fractures in track and field athletes. A twelve-month prospective study. Am J Sports Med 24(6):810–818

    Article  CAS  PubMed  Google Scholar 

  11. Warden SJ, Burr DB, Brukner PD (2006) Stress fractures: pathophysiology, epidemiology, and risk factors. Curr Osteoporos Rep 4(3):103–109

    Article  PubMed  Google Scholar 

  12. Rigotti NA, Nussbaum SR, Herzog DB, Neer RM (1984) Osteoporosis in women with anorexia nervosa. N Engl J Med 311(25):1601–1606. doi:10.1056/NEJM198412203112503

    Article  CAS  PubMed  Google Scholar 

  13. Zernicke RF, McNitt-Gray J, Otis C, Loitz B, Salem G, Finerman G (1994) Stress fractures risk assessment among elite collegiate women runners. J Biomech 27(6):854

    Article  Google Scholar 

  14. Rigotti NA, Neer RM, Skates SJ, Herzog DB, Nussbaum SR (1991) The clinical course of osteoporosis in anorexia nervosa. A longitudinal study of cortical bone mass. JAMA 265(9):1133–1138

    Article  CAS  PubMed  Google Scholar 

  15. Winfield AC, Moore J, Bracker M, Johnson CW (1997) Risk factors associated with stress reactions in female Marines. Mil Med 162(10):698–702

    CAS  PubMed  Google Scholar 

  16. Barrow GW, Saha S (1988) Menstrual irregularity and stress fractures in collegiate female distance runners. Am J Sports Med 16(3):209–216

    Article  CAS  PubMed  Google Scholar 

  17. Nattiv A, Armsey TD Jr (1997) Stress injury to bone in the female athlete. Clin Sports Med 16(2):197–224

    Article  CAS  PubMed  Google Scholar 

  18. Johnson AW, Weiss CB Jr, Wheeler DL (1994) Stress fractures of the femoral shaft in athletes—more common than expected. A new clinical test. Am J Sports Med 22(2):248–256

    Article  CAS  PubMed  Google Scholar 

  19. Goldberg B, Pecora C (1994) Stress fractures: a risk of increased training in freshman. Phys Sports Med 22:68–78

    Google Scholar 

  20. Bell DG, Jacobs I (1986) Electro-mechanical response times and rate of force development in males and females. Med Sci Sports Exerc 18(1):31–36

    Article  CAS  PubMed  Google Scholar 

  21. Miller GJ, Purkey WW Jr (1980) The geometric properties of paired human tibiae. J Biomech 13(1):1–8

    Article  CAS  PubMed  Google Scholar 

  22. Csizy M, Babst R, Fridrich KS (2000) "Bone tumor" diagnostic error in stress fracture of the medial tibial plateau. Unfallchirurg 103(11):993–995

    Article  CAS  PubMed  Google Scholar 

  23. Wall J, Feller JF (2006) Imaging of stress fractures in runners. Clin Sports Med 25(4):781–802. doi:10.1016/j.csm.2006.06.003

    Article  PubMed  Google Scholar 

  24. Pećina M, Bojanić I (2004) Overuse injuries of the musculoskeletal system, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  25. Muthukumar T, Butt SH, Cassar-Pullicino VN (2005) Stress fractures and related disorders in foot and ankle: plain films, scintigraphy, CT, and MR Imaging. Semin Musculoskelet Radiol 9(3):210–226. doi:10.1055/s-2005-921941

    Article  PubMed  Google Scholar 

  26. Anderson MW (2006) Imaging of upper extremity stress fractures in the athlete. Clin Sports Med 25(3):489–504. doi:10.1016/j.csm.2006.02.006, vii

    Article  PubMed  Google Scholar 

  27. Davies AM (1990) Stress lesions of bone. Curr Imaging 2:209–216

    Google Scholar 

  28. Carpentier VT, Wong J, Yeap Y, Gan C, Sutton-Smith P, Badiei A, Fazzalari NL, Kuliwaba JS (2012) Increased proportion of hypermineralized osteocyte lacunae in osteoporotic and osteoarthritic human trabecular bone: implications for bone remodeling. Bone 50(3):688–694. doi:10.1016/j.bone.2011.11.021

    Article  PubMed  Google Scholar 

  29. Syed FA, Hoey KA (2010) Integrative physiology of the aging bone: insights from animal and cellular models. Ann N Y Acad Sci 1211:95–106. doi:10.1111/j.1749-6632.2010.05813.x

    Article  PubMed  Google Scholar 

  30. Zebaze RM, Ghasem-Zadeh A, Bohte A, Iuliano-Burns S, Mirams M, Price RI, Mackie EJ, Seeman E (2010) Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet 375(9727):1729–1736. doi:10.1016/S0140-6736(10)60320-0

    Article  PubMed  Google Scholar 

  31. Iundusi R, Scialdoni A, Arduini M, Battisti D, Piperno A, Gasbarra E, Tarantino U (2013) Stress fractures in the elderly: different pathogenetic features compared with young patients. Aging Clin Exp Res 25(Suppl 1):S89–S91. doi:10.1007/s40520-013-0105-y

    Article  PubMed  Google Scholar 

  32. Yamamoto T, Bullough PG (2000) Spontaneous osteonecrosis of the knee: the result of subchondral insufficiency fracture. J Bone Joint Surg Am 82(6):858–866

    CAS  PubMed  Google Scholar 

  33. Robertson DD, Armfield DR, Towers JD, Irrgang JJ, Maloney WJ, Harner CD (2009) Meniscal root injury and spontaneous osteonecrosis of the knee: an observation. J Bone Joint Surg Br 91(2):190–195. doi:10.1302/0301-620X.91B2.21097

    Article  CAS  PubMed  Google Scholar 

  34. Fleisch H (2002) Development of bisphosphonates. Breast Cancer Res 4(1):30–34

    Article  CAS  PubMed  Google Scholar 

  35. Shoemaker LR (1999) Expanding role of bisphosphonate therapy in children. J Pediatr 134(3):264–267

    Article  CAS  PubMed  Google Scholar 

  36. Lenart BA, Lorich DG, Lane JM (2008) Atypical fractures of the femoral diaphysis in postmenopausal women taking alendronate. N Engl J Med 358(12):1304–1306. doi:10.1056/NEJMc0707493

    Article  CAS  PubMed  Google Scholar 

  37. Lenart BA, Neviaser AS, Lyman S, Chang CC, Edobor-Osula F, Steele B, van der Meulen MC, Lorich DG, Lane JM (2009) Association of low-energy femoral fractures with prolonged bisphosphonate use: a case control study. Osteoporos Int 20(8):1353–1362. doi:10.1007/s00198-008-0805-x

    Article  CAS  PubMed  Google Scholar 

  38. Rheinboldt M, Harper D, Stone M (2014) Atypical femoral fractures in association with bisphosphonate therapy: a case series. Emerg Radiol 21(5):557–562. doi:10.1007/s10140-014-1215-3

    Article  PubMed  Google Scholar 

  39. La Rocca VR, Rosenberg ZS, Allison MB, Im SA, Babb J, Peck V (2012) Frequency of incomplete atypical femoral fractures in asymptomatic patients on long-term bisphosphonate therapy. AJR Am J Roentgenol 198(5):1144–1151. doi:10.2214/AJR.11.7442

    Article  Google Scholar 

  40. Allison MB, Markman L, Rosenberg Z, Vieira RL, Babb J, Tejwani N, Peck V (2013) Atypical incomplete femoral fractures in asymptomatic patients on long term bisphosphonate therapy. Bone 55(1):113–118. doi:10.1016/j.bone.2013.03.018

    Article  CAS  PubMed  Google Scholar 

  41. Chan SS, Rosenberg ZS, Chan K, Capeci C (2010) Subtrochanteric femoral fractures in patients receiving long-term alendronate therapy: imaging features. AJR Am J Roentgenol 194(6):1581–1586. doi:10.2214/AJR.09.3588

    Article  PubMed  Google Scholar 

  42. Berger FH, de Jonge MC, Maas M (2007) Stress fractures in the lower extremity. The importance of increasing awareness amongst radiologists. Eur J Radiol 62(1):16–26. doi:10.1016/j.ejrad.2007.01.014

    Article  PubMed  Google Scholar 

  43. Swischuk LE, Jadhav SP (2014) Tibial stress phenomena and fractures: imaging evaluation. Emerg Radiol 21(2):173–177. doi:10.1007/s10140-013-1181-1

    Article  PubMed  Google Scholar 

  44. Fredericson M, Bergman AG, Hoffman KL, Dillingham MS (1995) Tibial stress reaction in runners. Correlation of clinical symptoms and scintigraphy with a new magnetic resonance imaging grading system. Am J Sports Med 23(4):472–481

    Article  CAS  PubMed  Google Scholar 

  45. Kijowski R, Choi J, Shinki K, Del Rio AM, De Smet A (2012) Validation of MRI classification system for tibial stress injuries. AJR Am J Roentgenol 198(4):878–884. doi:10.2214/AJR.11.6826

    Article  PubMed  Google Scholar 

  46. Yamamoto T, Bullough PG (2000) Subchondral insufficiency fracture of the femoral head and medial femoral condyle. Skeletal Radiol 29(1):40–44

    Article  CAS  PubMed  Google Scholar 

  47. Mueller D, Schaeffeler C, Baum T, Walter F, Rechl H, Rummeny EJ, Woertler K (2014) Magnetic resonance perfusion and diffusion imaging characteristics of transient bone marrow edema, avascular necrosis and subchondral insufficiency fractures of the proximal femur. Eur J Radiol 83(10):1862–1869. doi:10.1016/j.ejrad.2014.07.017

    Article  PubMed  Google Scholar 

  48. Sofka CM (2006) Imaging of stress fractures. Clin Sports Med 25(1):53–62. doi:10.1016/j.csm.2005.08.009, viii

    Article  PubMed  Google Scholar 

  49. Bennell K, Matheson G, Meeuwisse W, Brukner P (1999) Risk factors for stress fractures. Sports Med 28(2):91–122

    Article  CAS  PubMed  Google Scholar 

  50. Deutsch AL, Coel MN, Mink JH (1997) Imaging of stress injuries to bone. Radiography, scintigraphy, and MR imaging. Clin Sports Med 16(2):275–290

    Article  CAS  PubMed  Google Scholar 

  51. Nielens H, Devogelaer JP, Malghem J (1994) Occurrence of a painful stress fracture of the femoral neck simultaneously with six other asymptomatic localizations in a runner. J Sports Med Phys Fitness 34(1):79–82

    CAS  PubMed  Google Scholar 

  52. Joshi P, Lele V, Gandhi R, Parab A (2012) Honda sign on 18-FDG PET/CT in a case of lymphoma leading to incidental detection of sacral insufficiency fracture. J Clin Imaging Sci 2:29. doi:10.4103/2156-7514.96544

    Article  PubMed  PubMed Central  Google Scholar 

  53. Fujii M, Abe K, Hayashi K, Kosuda S, Yano F, Watanabe S, Katagiri S, Ka WJ, Tominaga S (2005) Honda sign and variants in patients suspected of having a sacral insufficiency fracture. Clin Nucl Med 30(3):165–169

    Article  PubMed  Google Scholar 

  54. Cabarrus MC, Ambekar A, Lu Y, Link TM (2008) MRI and CT of insufficiency fractures of the pelvis and the proximal femur. AJR Am J Roentgenol 191(4):995–1001. doi:10.2214/AJR.07.3714

    Article  PubMed  Google Scholar 

  55. Rosenberg ZS, La Rocca VR, Chan SS, Babb J, Akyol Y, Rybak LD, Moore S, Bencardino JT, Peck V, Tejwani NC, Egol KA (2011) Bisphosphonate-related complete atypical subtrochanteric femoral fractures: diagnostic utility of radiography. AJR Am J Roentgenol 197(4):954–960. doi:10.2214/AJR.10.6262

    Article  PubMed  Google Scholar 

  56. Png MA, Koh JS, Goh SK, Fook-Chong S, Howe TS (2012) Bisphosphonate-related femoral periosteal stress reactions: scoring system based on radiographic and MRI findings. AJR Am J Roentgenol 198(4):869–877. doi:10.2214/AJR.11.6794

    Article  PubMed  Google Scholar 

  57. Zanetti M, Steiner CL, Seifert B, Hodler J (2002) Clinical outcome of edema-like bone marrow abnormalities of the foot. Radiology 222(1):184–188. doi:10.1148/radiol.2221010316

    Article  PubMed  Google Scholar 

  58. MacDougall L, Conway WF (1996) Controversies in magnetic resonance imaging of the hip. Top Magn Reson Imaging 8(1):44–50

    Article  CAS  PubMed  Google Scholar 

  59. Raasch WG, Hergan DJ (2006) Treatment of stress fractures: the fundamentals. Clin Sports Med 25(1):29–36. doi:10.1016/j.csm.2005.08.013, vii

    Article  PubMed  Google Scholar 

  60. Debnath UK, Freeman BJ, Grevitt MP, Sithole J, Scammell BE, Webb JK (2007) Clinical outcome of symptomatic unilateral stress injuries of the lumbar pars interarticularis. Spine (Phila Pa 1976) 32(9):995–1000. doi:10.1097/01.brs.0000260978.10073.90

    Article  Google Scholar 

  61. Boden BP, Osbahr DC (2000) High-risk stress fractures: evaluation and treatment. J Am Acad Orthop Surg 8(6):344–353

    Article  CAS  PubMed  Google Scholar 

  62. Fredericson M, Jennings F, Beaulieu C, Matheson GO (2006) Stress fractures in athletes. Top Magn Reson Imaging 17(5):309–325. doi:10.1097/RMR.0b013e3180421c8c

    Article  PubMed  Google Scholar 

  63. Lyders EM, Whitlow CT, Baker MD, Morris PP (2010) Imaging and treatment of sacral insufficiency fractures. AJNR Am J Neuroradiol 31(2):201–210. doi:10.3174/ajnr.A1666

    Article  CAS  PubMed  Google Scholar 

  64. Kim SR, Ha YC, Park YG, Lee SR, Koo KH (2011) Orthopedic surgeon’s awareness can improve osteoporosis treatment following hip fracture: a prospective cohort study. J Korean Med Sci 26(11):1501–1507. doi:10.3346/jkms.2011.26.11.1501

    Article  PubMed  PubMed Central  Google Scholar 

  65. Nieves JW, Cosman F (2010) Atypical subtrochanteric and femoral shaft fractures and possible association with bisphosphonates. Curr Osteoporos Rep 8(1):34–39. doi:10.1007/s11914-010-0007-2

    Article  PubMed  Google Scholar 

  66. Kang JS, Won YY, Kim JO, Min BW, Lee KH, Park KK, Song JH, Kim YT, Kim GH (2014) Atypical femoral fractures after anti-osteoporotic medication: a Korean multicenter study. Int Orthop 38(6):1247–1253. doi:10.1007/s00264-013-2259-9

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Robert W. Henderson, MD for contributing the case of a sacral insufficiency fracture on PET-CT (Fig. 7c). We would also like to honor the memory of Deborah M. Forrester, MD, who was a co-author on the educational exhibit from which this paper derives and served as such an inspirational teacher and mentor to us during her long and brilliant career.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George R. Matcuk Jr.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Grants

The authors did not receive any grants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matcuk, G.R., Mahanty, S.R., Skalski, M.R. et al. Stress fractures: pathophysiology, clinical presentation, imaging features, and treatment options. Emerg Radiol 23, 365–375 (2016). https://doi.org/10.1007/s10140-016-1390-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10140-016-1390-5

Keywords

Navigation