Skip to main content

Advertisement

Log in

A Carbonic Anhydrase Serves as an Important Acid-Base Regulator in Pacific Oyster Crassostrea gigas Exposed to Elevated CO2: Implication for Physiological Responses of Mollusk to Ocean Acidification

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Carbonic anhydrases (CAs) have been demonstrated to play an important role in acid-base regulation in vertebrates. However, the classification and modulatory function of CAs in marine invertebrates, especially their responses to ocean acidification remain largely unknown. Here, a cytosolic α-CA (designated as CgCAII-1) was characterized from Pacific oyster Crassostrea gigas and its molecular activities against CO2 exposure were investigated. CgCAII-1 possessed a conserved CA catalytic domain, with high similarity to invertebrate cytoplasmic or mitochondrial α-CAs. Recombinant CgCAII-1 could convert CO2 to HCO3 with calculated activity as 0.54 × 103 U/mg, which could be inhibited by acetazolamide (AZ). The mRNA transcripts of CgCAII-1 in muscle, mantle, hepatopancreas, gill, and hemocytes increased significantly after exposure to elevated CO2. CgCAII-1 could interact with the hemocyte membrane proteins and the distribution of CgCAII-1 protein became more concentrated and dense in gill and mantle under CO2 exposure. The intracellular pH (pHi) of hemocytes under CO2 exposure increased significantly (p < 0.05) and CA inhibition reduced the pHi value. Besides, there was no increase in CA activity in gill and mantle after CO2 exposure. The impact of CO2 exposure on CA activity coupled with the mRNA expression level and protein translocation of CgCAII-1 provided evidences that CgCAII-1 could respond to ocean acidification and participate in acid-base regulation. Such cytoplasmic CA-based physiological regulation mechanism might explain other physiological responses of marine organisms to OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Baker DW, Matey V, Huynh KT, Wilson JM, Morgan JD, Brauner CJ (2009) Complete intracellular pH protection during extracellular pH depression is associated with hypercarbia tolerance in white sturgeon, Acipenser transmontanus. Am J Physiol Regul Integr Comp Physiol 296:R1868–R1880

    Article  CAS  PubMed  Google Scholar 

  • Becker HM, Klier M, Schuler C, McKenna R, Deitmer JW (2011) Intramolecular proton shuttle supports not only catalytic but also noncatalytic function of carbonic anhydrase II. Proc Natl Acad Sci U S A 108:3071–3076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertucci A, Tambutté S, Supuran CT, Allemand D, Zoccola D (2011) A new coral carbonic anhydrase in Stylophora pistillata. Mar Biotechnol (NY) 13:–1002

  • Bertucci A, Moya A, Tambutté S, Allemand D, Supuran CT, Zoccola D (2013) Carbonic anhydrases in anthozoan corals—a review. Bioorg Med Chem 21:1437–1450

    Article  CAS  PubMed  Google Scholar 

  • Burnett LE, McMahon BR (1985) Facilitation of CO2 excretion by carbonic anhydrase located on the surface of the basal membrane of crab gill epithelium. Respir Physiol 62:341–348

  • Cao A, Mercado L, Ramos-Martinez JI, Barcia R (2003) Primary cultures of hemocytes from Mytilus galloprovincialis Lmk.: expression of IL-2Rα subunit. Aquaculture 216:1–8

    Article  CAS  Google Scholar 

  • Chegwidden WR, Carter ND, Edwards YH (2000) The carbonic anhydrases: new horizons. Birkhäuser, Basel

  • Cheng S, Zhan W, Xing J, Sheng X (2006) Development and characterization of monoclonal antibody to the lymphocystis disease virus of Japanese flounder Paralichthys olivaceus isolated from China. J Virol Methods 135:173–180

    Article  CAS  PubMed  Google Scholar 

  • Clark AM (1948) Carbonic anhydrase in Arenicola marina. Nature 162:191

    Article  CAS  PubMed  Google Scholar 

  • Darlington MV, Meyer H, Graf G (1984) The localization, purification and partial characterization of carbonic anhydrase in the face fly Musca autumnalis. Ann N Y Acad Sci 429:219–221

    Article  CAS  PubMed  Google Scholar 

  • Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Annu Rev Mar Sci 1:169–192

    Article  Google Scholar 

  • Eric FP, James PB (2007) Extracellular acid-base regulation during short-term hypercapnia is effective in a shallow-water crab, but ineffective in a deep-sea crab. Mar Ecol Prog Ser 334:1–9

    Article  Google Scholar 

  • Esbaugh AJ, Tufts B (2006) The structure and function of carbonic anhydrase isozymes in the respiratory system of vertebrates. Respir Physiol Neurobiol 154:185–198

  • Esbaugh AJ, Heuer R, Grosell M (2012) Impacts of ocean acidification on respiratory gas exchange and acid-base balance in a marine teleost, Opsanus beta. J Comp Physiol B 182:921–934

    Article  CAS  PubMed  Google Scholar 

  • Fitzer SC, Phoenix VR, Cusack M, Kamenos NA (2014) Ocean acidification impacts mussel control on biomineralisation. Sci Rep 4:6218

    Article  CAS  PubMed  Google Scholar 

  • Freeman JA, Wilbur KM (1948) Carbonic anhydrase in molluiscs. Biol Bull 94:55–59

    Article  CAS  PubMed  Google Scholar 

  • Frost SC, McKenna R (2013) Carbonic anhydrase: mechanism, regulation, links to disease, and industrial applications. Springer, Dordrecht

  • Georgalis T, Gilmour KM, Yorston J, Perry SF (2006a) Roles of cytosolic and membrane-bound carbonic anhydrase in renal control of acid-base balance in rainbow trout, Oncorhynchus mykiss. Am J Physiol Ren Physiol 291:F407–F421

  • Georgalis T, Perry SF, Gilmour KM (2006b) The role of branchial carbonic anhydrase in acid-base regulation in rainbow trout (Oncorhynchus mykiss). J Exp Biol 209:518–530

    Article  CAS  PubMed  Google Scholar 

  • Grosell M, Gilmour KM, Perry SF (2007) Intestinal carbonic anhydrase, bicarbonate, and proton carriers play a role in the acclimation of rainbow trout to seawater. Am J Physiol Regul Integr Comp Physiol 293:R2099–R2111

    Article  CAS  PubMed  Google Scholar 

  • Hüning AK, Melzner F, Thomsen J, Gutowska MA, Krämer L, Frickenhaus S, Rosenstiel P, Pörtner HO, Philipp EER, Lucassen M (2012) Impacts of seawater acidification on mantle gene expression patterns of the Baltic Sea blue mussel: implications for shell formation and energy metabolism. Mar Biol 160:1845–1861

    Article  Google Scholar 

  • Henry RP (1984) The function of invertebrate carbonic anhydrase in ion transport. Ann N Y Acad Sci 429:544–546

    Article  CAS  PubMed  Google Scholar 

  • Henry RP (1988) Multiple functions of carbonic anhydrase in the crustacean gill. J Exp Zool 248:19–24

    Article  CAS  Google Scholar 

  • Heuer RM, Grosell M (2014) Physiological impacts of elevated carbon dioxide and ocean acidification on fish. Am J Physiol Regul Integr Comp Physiol 307:R1061–R1084

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  PubMed  Google Scholar 

  • Istin M, Girard J (1970) Carbonic anhydrase and mobilisation of calcium reserves in the mantle of lamellibranchs. Calcif Tissue Res 5:247–260

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Kobayashi S, Nakamura N, Miyagi H, Esaki M, Hoshijima K, Hirose S (2013) Close Association of carbonic anhydrase (CA2a and CA15a), Na+/H+ exchanger (Nhe3b), and ammonia transporter Rhcg1 in zebrafish ionocytes responsible for Na+ uptake. Front Physiol 4:59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanina AV, Dickinson GH, Matoo OB, Bagwe R, Dickinson A, Beniash E, Sokolova IM (2013) Interactive effects of elevated temperature and CO2 levels on energy metabolism and biomineralization of marine bivalves Crassostrea virginica and Mercenaria mercenaria. Comp Biochem Physiol A Mol Integr Physiol 166:101–111

    Article  CAS  PubMed  Google Scholar 

  • Jackson DJ, Macis L, Reitner J, Degnan BM, Worheide G (2007) Sponge paleogenomics reveals an ancient role for carbonic anhydrase in skeletogenesis. Science 316:1893–1895

    Article  CAS  PubMed  Google Scholar 

  • Jemaà M, Morin N, Cavelier P, Cau J, Strub JM, Delsert C (2014) Adult somatic progenitor cells and hematopoiesis in oysters. J Exp Biol 217:3067–3077

    Article  PubMed  Google Scholar 

  • Jia Z, Zhang T, Jiang S, Wang M, Cheng Q, Sun M, Wang L, Song L (2015) An integrin from oyster Crassostrea gigas mediates the phagocytosis toward Vibrio splendidus through LPS binding activity. Dev Comp Immunol 53:253–264

    Article  CAS  PubMed  Google Scholar 

  • Lannig G, Eilers S, Portner HO, Sokolova IM, Bock C (2010) Impact of ocean acidification on energy metabolism of oyster, Crassostrea gigas--changes in metabolic pathways and thermal response. Mar Drugs 8:2318–2339

  • Li S, Huang J, Liu C, Liu Y, Zheng G, Xie L, Zhang R (2016a) Interactive effects of seawater acidification and elevated temperature on the transcriptome and biomineralization in the pearl oyster Pinctada fucata. Environ Sci Technol 50:1157–1165

  • Li S, Liu C, Huang J, Liu Y, Zhang S, Zheng G, Xie L, Zhang R (2016b) Transcriptome and biomineralization responses of the pearl oyster Pinctada fucata to elevated CO2 and temperature. Sci Rep 6:18943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Alvarez B, Casey JR, Reithmeier RA, Fliegel L (2002) Carbonic anhydrase II binds to and enhances activity of the Na+/H+ exchanger. J Biol Chem 277:36085–36091

    Article  CAS  PubMed  Google Scholar 

  • Liang JY, Lipscomb WN (1990) Binding of substrate CO2 to the active site of human carbonic anhydrase II: a molecular dynamics study. Proc Natl Acad Sci U S A 87:3675–3679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin TY, Liao BK, Horng JL, Yan JJ, Hsiao CD, Hwang PP (2008) Carbonic anhydrase 2-like a and 15a are involved in acid-base regulation and Na+ uptake in zebrafish H+-ATPase-rich cells. Am J Physiol Cell Physiol 294:C1250–C1260

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Liu S, Hu Y, Pan L (2015) Cloning and expression analysis of two carbonic anhydrase genes in white shrimp Litopenaeus vannamei, induced by pH and salinity stresses. Aquaculture 448:391–400

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Daly CM, Parker MD, Gill HS, Piermarini PM, Pelletier MF, Boron WF (2006) Effect of human carbonic anhydrase II on the activity of the human electrogenic Na/HCO3 cotransporter NBCe1-A in Xenopus oocytes. J Biol Chem 281:19241–19250

    Article  CAS  PubMed  Google Scholar 

  • Meyran J, Graf F, Fournié J (1987) Carbonic anhydrase activity in a calcium-mobilizing epithelium of the crustacean Orchestia cavimana during molting. Histochemistry 87:419–429

    Article  CAS  PubMed  Google Scholar 

  • Michaelidis B, Ouzounis C, Paleras A, Pörtner HO (2005) Effects of long-term moderate hypercapnia on acid-base balance and growth rate in marine mussels Mytilus galloprovincialis. Mar Ecol Prog Ser 293:109–118

    Article  Google Scholar 

  • Miles H, Widdicombe S, Spicer JI, Hall-Spencer J (2007) Effects of anthropogenic seawater acidification on acid–base balance in the sea urchin Psammechinus miliaris. Mar Pollut Bull 54:89–96

    Article  CAS  PubMed  Google Scholar 

  • Miller AW, Reynolds AC, Sobrino C, Riedel GF (2009) Shellfish face uncertain future in high CO2 world: influence of acidification on oyster larvae calcification and growth in estuaries. PLoS One 4:e5661

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyamoto H, Miyashita T, Okushima M, Nakano S, Morita T, Matsushiro A (1996) A carbonic anhydrase from the nacreous layer in oyster pearls. Proc Natl Acad Sci U S A 93:9657–9660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moya A, Tambutte S, Bertucci A, Tambutte E, Lotto S, Vullo D, Supuran CT, Allemand D, Zoccola D (2008) Carbonic anhydrase in the scleractinian coral Stylophora pistillata: characterization, localization, and role in biomineralization. J Biol Chem 283:25475–25484

    Article  CAS  PubMed  Google Scholar 

  • Nielsen SA, Frieden E (1972) Carbonic anhydrase activity in molluscs. Comp Biochem Physiol B 41:461–468

  • Pörtner HO, Reipschläger A, Heisler N (1998) Acid-base regulation, metabolism and energetics in sipunculus nudus as a function of ambient carbon dioxide level. J Exp Biol 201:43–55

    PubMed  Google Scholar 

  • Parker LM, Ross PM, O’Connor WA, Pörtner HO, Scanes E, Wright JM (2013) Predicting the response of molluscs to the impact of ocean acidification. Biology 2:651–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman MA, Oomori T, Uehara T (2008) Carbonic anhydrase in calcified endoskeleton: novel activity in biocalcification in alcyonarian. Mar Biotechnol (NY) 10:31–38

    Article  CAS  Google Scholar 

  • Reipschläger A, Pörtner HO (1996) Metabolic depression during environmental stress: the role of extracellular versus intracellular pH in Sipunculus nudus. J Exp Biol 199:1801–1807

    Google Scholar 

  • Ren G, Wang Y, Qin J, Tang J, Zheng X, Li Y (2014) Characterization of a novel carbonic anhydrase from freshwater pearl mussel Hyriopsis cumingii and the expression profile of its transcript in response to environmental conditions. Gene 546:56–62

    Article  CAS  PubMed  Google Scholar 

  • Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz GJ (2001) Physiology and molecular biology of renal carbonic anhydrase. J Nephrol 15:S61–S74

    Google Scholar 

  • Seetharaman P, Sarma K, George G, Krishnan P, Roy SD, Sankar K (2015) Impact of coastal pollution on microbial and mineral profile of edible oyster (Crassostrea rivularis) in the coastal waters of Andaman. B Environ Contam Tox 95:599–605

    Article  CAS  Google Scholar 

  • Vince JW, Reithmeier RA (2000) Identification of the carbonic anhydrase II binding site in the Cl/HCO3 anion exchanger AE1. Biochemistry 39:5527–5533

    Article  CAS  PubMed  Google Scholar 

  • Widdicombe S, Spicer JI (2008) Predicting the impact of ocean acidification on benthic biodiversity: what can animal physiology tell us? J Exp Mar Bio Ecol 366:187–197

    Article  Google Scholar 

  • Wilbur K, Anderson N (1948) Electrometric and colorimetric determination of carbonic anhydrase. J Biol Chem 176:147–154

    CAS  PubMed  Google Scholar 

  • Wilbur K, Anderson N (1950) Carbonic anhydrase and growth in the oyster and busycon. Biol Bull 98:19–24

    Article  CAS  PubMed  Google Scholar 

  • Wittmann AC, Pörtner HO (2013) Sensitivities of extant animal taxa to ocean acidification. Nat Clim Chang 3:995–1001

  • Yao Z, Lai Q, Hao Z, Chen L, Lin T, Zhou K, Wang H (2015) Carbonic anhydrase 2-like and Na+-K+-ATPase α gene expression in medaka (Oryzias latipes) under carbonate alkalinity stress. Fish Physiol Biochem 41:1491–1500

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Xie L, Lee S, Zhang R (2006) A novel carbonic anhydrase from the mantle of the pearl oyster (Pinctada fucata). Comp Biochem Physiol B Biochem Mol Biol 143:190–194

    Article  PubMed  Google Scholar 

  • Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, Yang P, Zhang L, Wang X, Qi H, Xiong Z, Que H, Xie Y, Holland PW, Paps J, Zhu Y, Wu F, Chen Y, Wang J, Peng C, Meng J, Yang L, Liu J, Wen B, Zhang N, Huang Z, Zhu Q, Feng Y, Mount A, Hedgecock D, Xu Z, Liu Y, Domazet-Loso T, Du Y, Sun X, Zhang S, Liu B, Cheng P, Jiang X, Li J, Fan D, Wang W, Fu W, Wang T, Wang B, Zhang J, Peng Z, Li Y, Li N, Wang J, Chen M, He Y, Tan F, Song X, Zheng Q, Huang R, Yang H, Du X, Chen L, Yang M, Gaffney PM, Wang S, Luo L, She Z, Ming Y, Huang W, Zhang S, Huang B, Zhang Y, Qu T, Ni P, Miao G, Wang J, Wang Q, Steinberg CE, Wang H, Li N, Qian L, Zhang G, Li Y, Yang H, Liu X, Wang J, Yin Y, Wang J (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490:49–54

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to all the laboratory members for their technical advice and helpful discussions. This research was supported by the Research Foundation for Talented Scholars in Dalian Ocean University (to L. S.), Dalian high level talent innovation support program (2015R020), and the earmarked funds for Modern Agro-industry Technology Research System (CARS-48).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linsheng Song.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wang, M., Jia, Z. et al. A Carbonic Anhydrase Serves as an Important Acid-Base Regulator in Pacific Oyster Crassostrea gigas Exposed to Elevated CO2: Implication for Physiological Responses of Mollusk to Ocean Acidification. Mar Biotechnol 19, 22–35 (2017). https://doi.org/10.1007/s10126-017-9734-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-017-9734-z

Keywords

Navigation