Skip to main content
Log in

Biochemical Modulation by Carbon and Nitrogen Addition in Cultures of Dictyota menstrualis (Dictyotales, Phaeophyceae) to Generate Oil-based Bioproducts

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Dictyota menstrualis (Hoyt) Schnetter, Hörning & Weber-Peukert (Dictyotales, Phaeophyceae) was studied for the production of oil-based bioproducts and co-products. Experiments were performed to evaluate the effect of carbon dioxide (CO2) concentration, under nitrogen (NO3 ) limiting and saturation conditions, on growth rate (GR), photosynthesis, as well as nitrate reductase (NR), carbonic anhydrase (CA), and Rubisco activities. In addition, the biochemical composition of D. menstrualis under these conditions was estimated. GR, protein content, and N content in D. menstrualis were higher in treatments containing NO3 , irrespective of CO2 addition. However, when CO2 was added to medium saturated with NO3 , values of maximum photosynthesis, Rubisco, and NR activity, as well as total soluble carbohydrates and lipids, were increased. CA activity did not vary under the different treatments. The fatty acid profile of D. menstrualis was characterized by a high content of polyunsaturated fatty acids, especially the omega-3 fatty acids, making it a possible candidate for nutraceutical use. In addition, this species presented high GR, photosynthetic rate, and fatty acid content, highlighting its economic importance and the possibility of different biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cardozo KHM, Carvalho VM, Pinto E, Colepicolo P (2006) Fragmentation of mycosporine-like amino acids by hydrogen/deuterium exchange and electrospray ionisation tandem mass spectrometry. Rapid Commun Mass Spectrom 20(2):253–258

    Article  CAS  PubMed  Google Scholar 

  • Chapman DJ, Harrison PJ (1988) Nitrogen metabolism and measurement of nitrate reductase activity. In: Lobban CS, Chapman DJ, Kremer B (eds) Experimental phycology. A laboratory manual. Cambridge University Press, Cambridge

    Google Scholar 

  • Chow F, Oliveira MC, Pedersén M (2004) In vitro assay and light regulation of nitrate reductase in red alga Gracilaria chilensis. J Plant Physiol 161:769–776

    Article  CAS  PubMed  Google Scholar 

  • Dickson AG, Sabine CL, Christian JR (2007) Guide to best practices for ocean CO2 measurements. PICES Special Publication. Available in ftp://cdiac.ornl.gov/pub/oceans/Handbook_2007/Guide_all_in_one.pdf. Accessed 9 June 2011

  • Dubois M, Gilles FA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for the determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Gerard VA, Driscoll T (1996) A spectrophotometric assay for Rubisco activity: application to the kelp Laminaria saccharina and implications for radiometric assays. J Phycol 32:880–884

    Article  CAS  Google Scholar 

  • Gordillo FJ, Niell FX, Figueroa FL (2001) Non-photosynthetic enhancement of growth by high CO2 level in the nitrophilic seaweed Ulva rigida C. Agardh (Chlorophyta). Planta 213:64–70

    Article  CAS  PubMed  Google Scholar 

  • Gosch BJ, Magnusson M, Paul NA, Nys R (2012) Total lipid and fatty acid composition of seaweeds for the selection of species for oil-based biofuel and bioproducts. GCB Bioenergy 4:919–930

    Article  CAS  Google Scholar 

  • Gosch BJ, Paul NA, Nys R, Magnusson M (2015) Spatial, seasonal, and within-plant variation in total fatty acid content and composition in the brown seaweeds Dictyota bartayresii and Dictyopteris australis (Dictyotales, Phaeophyceae). J Appl Phycol 27:1607–1622

    Article  CAS  Google Scholar 

  • Gressler V, Colepicolo P, Pinto E (2009) Useful strategies for algal volatile analysis. Curr Anal Chem 5:271–292

    Article  CAS  Google Scholar 

  • Gressler V, Yokoya NS, Fujii MT, Colepicolo P, Mancini-Filho J, Torres RP, Pinto E (2010) Lipid, fatty acid, protein, amino acid and ash contents in four Brazilian red algae species. Food Chem 120:585–590

    Article  CAS  Google Scholar 

  • Gressler V, Fujii MT, Martins AP, Colepicolo P, Mancini-Filho J, Pinto E (2011a) Biochemical composition of two red seaweed species grown on the Brazilian coast. J Sci Food Agric 91:1687–1692

    Article  CAS  PubMed  Google Scholar 

  • Gressler V, Stein EM, Dörr F, Fujii MT, Colepicolo P, Pinto E (2011b) Sesquiterpenes from the essential oil of Laurencia dendroidea (Ceramiales, Rhodophyta): isolation, biological activities and distribution among seaweeds. Rev Bras Farmacogn 21:248–254

    Article  CAS  Google Scholar 

  • Haglund K, Bjork M, Ramazanov Z, Garcia-Reina G, Pedersén M (1992) Role of carbonic anhydrase in photosynthesis and inorganic-carbon assimilation in the red alga Gracilaria tenuistipitata. Planta 187:275–281

    Article  CAS  PubMed  Google Scholar 

  • Hanisak MD (1983) The nitrogen relationships of marine macroalgae. In: Carpenter EJ, Capone DG (eds) Nitrogen in the marine environment. Academic Press Inc, New York

    Google Scholar 

  • Heins Walz GmbH (1998) Underwater fluorometer diving-PAM. Submersible photosynthesis yield analyzer. Handbook of operation. Heins Walz GmbH, Germany

    Google Scholar 

  • Hu H, Gao K (2006) Response of growth and fatty acid compositions of Nannochloropsis sp. to environmental factors under elevated CO2 concentration. Biotechnol Lett 28:987–992

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 e c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194

    CAS  Google Scholar 

  • Karsten U, West JA, Zuccarello GC, Nixdorf O, Barrow KD, King RJ (1999) Low molecular weight carbohydrate patterns in the Bangiophyceae (Rhodophyta). J Phycol 35:967–976

    Article  CAS  Google Scholar 

  • Kubler JE, Johnston AM, Raven JA (1999) The effects of reduced and elevated CO2 and O2 on the seaweed Lomentaria articulata. Plant Cell Environ 22:1303–1310

    Article  Google Scholar 

  • Kuhlenkamp R, Franklin LA, Lüning K (2001) Effect of solar ultraviolet radiation on growth in the marine macroalga Dictyota dichotoma (Phaeophyceae) at Helgoland and its ecological consequences. Helgol Mar Res 55:77–86

    Article  Google Scholar 

  • Lavigne H, Proye A, Gattuso J-P (2009) Calculates parameters of the seawater carbonate system. Package seacarb. http://epic.awi.de/28989/1/Lav2009a.pdf. Accessed 12 Jul 2011

  • Lobban CS, Harrison PJ (1994) Seaweed ecology and physiology. Cambridge University Press, Cambridge

  • Martins AP, Jr Necchi O, Colepicolo P, Yokoya NS (2011) Effects of nitrate and phosphate availabilities on growth, photosynthesis and pigment and protein contents in colour strains of Hypnea musciformis (Wulfen in Jacqu.) J.V. Lamour. (Gigartinales, Rhodophyta). Rev Bras Farmacogn 21:340–348

    Article  CAS  Google Scholar 

  • Martins AP, Colepicolo P, Yokoya NS (2012) Comparison of extraction and transesterification methods on the determination of the fatty acid contents of three Brazilian seaweed species. Rev Bras Farmacogn 22:854–860

    Article  CAS  Google Scholar 

  • Mercado JM, Javier F, Gordillo L, Niell FX, Figueroa FL (1999) Effects of different levels of CO2 on photosynthesis and cell components of the red alga Porphyra leucosticta. J Appl Phycol 11:455–461

    Article  Google Scholar 

  • Moraes FP, Colla LM (2006) Alimentos funcionais e nutracêuticos: definições, legislação e benefícios à saúde. Rev Eletrônica Farm 3:109–122

    Google Scholar 

  • Moreira NX, Curi R, Mancini-Filho J (2002) Ácidos graxos: uma revisão. Rev Nutrire 24:105–123

  • Necchi O (2004) Light-related photosynthetic characteristics of lotic macroalgae. Hydrobiologia 525:139–155

    Article  Google Scholar 

  • Oliveira EC, Paula EJ, Plastino EM, Petti R (1995) Metodologias para cultivo no axenico de macroalgas marinhas in vitro. In: Alveal K, Ferrario ME, Oliveira EC, Sar E (eds) Manual de métodos ficológicos. Universidad de Concepción, Concepcion

    Google Scholar 

  • Patarra ARF (2008) Pesquisa de ácidos gordos em macroalgas marinhas do litoral dos açores. Master dissertation. Universidade do Porto

  • Platt T, Gallegos CL, Harrison WG (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38:687–701

    Google Scholar 

  • Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol 19:430–436

    Article  CAS  PubMed  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnerg Res 1:20–43

  • Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a non-intrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze E-D, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer, Berlin, p 49–70

  • Simas-Rodrigues C, Villela HDM, Martins AP, Marques LG, Colepicolo P, Tonon AP (2015) Microalgae for economic applications: advantages and perspectives for bioethanol. J Exp Bot 66:4097–4108

    Article  CAS  PubMed  Google Scholar 

  • Taiz L, Zeiger E (2004) Fisiologia vegetal. Artmed, Porto Alegre

  • Tsuzuki M, Ohnuma E, Sato N, Takaku T, Kawaguchi A (1990) Effects of CO2 concentration during growth on fatty acid composition in microalgae. Plant Physiol 93:851–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van den Hoek C, Mann DG, Jahns HM (1995) Algae: an introduction to phycology. Cambridge University Press, Cambridge

    Google Scholar 

  • van Iersel S, Flammini A (2010) Algae-based biofuels: applications and co-products. FAO environmental and natural resources management working paper. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Wall R, Ross RP, Fitzgerald GF, Stanton C (2010) Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr Rev 68:280–289

    Article  PubMed  Google Scholar 

  • Wang C, Fan X, Wang G, Niu J, Zhou B (2011) Differential expression of rubisco in sporophytes and gametophytes of some marine macroalgae. PLoS One. doi:10.1371/journal.pone.0016351

    Google Scholar 

  • Yokoya NS (2000) Apical callus formation and plant regeneration controlled by plant growth regulators on axenic culture of the red alga Gracilariopsis tenuifrons (Gracilariales, Rhodophyta). Phycol Res 48:133–142

    Article  CAS  Google Scholar 

  • Yokoya NS, Necchi O Jr, Martins AP, Gonzalez SF, Plastino EM (2007) Growth responses and photosynthetic characteristics of wild and phycoerythrin-deficient strains of Hypnea musciformis (Rhodophyta). J Appl Phycol 19:197–205

    Article  CAS  Google Scholar 

  • Young EB, Lavery PS, van Elven B, Dring MJ, Berges JA (2005) Nitrate reductase activity in macroalgae and its vertical distribution in macroalgal epiphytes of seagrasses. Mar Ecol Prog Ser 288:103–114

    Article  CAS  Google Scholar 

  • Young EB, Berges JA, Dring MJ (2009) Physiological responses of intertidal marine brown algae to nitrogen. Physiol Plant 135:400–411

    Article  CAS  PubMed  Google Scholar 

  • Zou D (2005) Effects of elevated atmospheric CO2 on growth, photosynthesis and nitrogen metabolism in the economic brown seaweed, Hizikia fusiforme (Sargassaceae, Phaeophyta). Aquaculture 250:726–735

    Article  CAS  Google Scholar 

  • Zou D, Gao K (2009) Effects of elevated CO2 on the red seaweed Gracilaria lemaneiformis (Gigartinales, Rhodophyta) grown at different irradiance levels. Phycologia 48:510–517

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) [projects 10/50193-1 and 12/19844-1], Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) [by scholarships provided to the first author], Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil), and the Ministério da Saúde, Ministério de Ciência e Tecnologia and CNPq-INCT-Redoxoma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aline P. Martins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, A.P., Yokoya, N.S. & Colepicolo, P. Biochemical Modulation by Carbon and Nitrogen Addition in Cultures of Dictyota menstrualis (Dictyotales, Phaeophyceae) to Generate Oil-based Bioproducts. Mar Biotechnol 18, 314–326 (2016). https://doi.org/10.1007/s10126-016-9693-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-016-9693-9

Keywords

Navigation