Skip to main content
Log in

Enzyme-Assisted Preparation of Furcellaran-Like κ-/β-Carrageenan

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Carrageenans are sulfated galactans that are widely used in industrial applications for their thickening and gelling properties, which vary according to the amount and distribution of ester sulfate groups along the galactan backbone. To determine and direct the sulfation of κ-carrageenan moieties, we purified an endo-κ-carrageenan sulfatase (Q15XH1 accession in UniprotKB) from Pseudoalteromonas atlantica T6c extracts. Based on sequence analyses and exploration of the genomic environment of Q15XH1, we discovered and characterized a second endo-κ-carrageenan sulfatase (Q15XG7 accession in UniprotKB). Both enzymes convert κ-carrageenan into a hybrid, furcellaran-like κ-/β-carrageenan. We compared the protein sequences of these two new κ-carrageenan sulfatases and that of a previously reported ι-carrageenan sulfatase with other predicted sulfatases in the P. atlantica genome, revealing the existence of additional new carrageenan sulfatases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anastyuk SD, Barabanova AO, Correc G, Nazarenko EL, Davydova VN, Helbert W, Dmitrenok PS, Yermak IM (2011) Analysis of structural heterogeneity of κ/β-carrageenan oligosaccharides from Tichocarpus crinitus by negative-ion ESI and tandem mass spectrometry. Carbohydr Polym 86:546–554

    Article  CAS  Google Scholar 

  • Appel MJ, Bertozzi CR (2015) Formylglycine, a post-translationally generated residue with unique catalytic capabilities and biotechnology applications. ACS Chem Biol 10:72–84

    Article  PubMed  CAS  Google Scholar 

  • Barabanova AO, Yermak I, Glazunov VP, Isakov VV, Titlyanov EA, Solov’eva TF (2005) Comparative study of carrageenan from reproductive and sterile forms of Tichocarpus crinitus (Gmel.) Rupr. (Rhodophyta, Tichocarpaceae). Biochem Mosc 70:430–437

    Article  CAS  Google Scholar 

  • Benjdia A, Dehò G, Rabot S, Berteau O (2007) First evidences for a third sulfatase maturation system in prokaryotes from E. coli aslB and ydeM deletion mutants. FEBS Lett 581:1009–1014

    Article  PubMed  CAS  Google Scholar 

  • Berteau O, Guillot A, Benjdia A, Rabot S (2006) A new type of bacterial sulfatase reveals a novel maturation pathway in prokaryotes. J Biol Chem 281:22464–22470

    Article  PubMed  CAS  Google Scholar 

  • Bjerre-Petersen E, Christensen J, Hemmingsen P (1973) Chapter VII: furcellaran. In: Whistler RL (ed) Industrial gums, 2nd edn. Academic, New York, pp 123–136

    Chapter  Google Scholar 

  • Boltes I, Czapinska H, Kahnert A, von Bülow R, Dierks T, Schmidt B, von Figura K, Kertesz MA, Usón I (2001) 1.3 A structure of arylsulfatase from Pseudomonas aeruginosa establishes the catalytic mechanism of sulfate ester cleavage in the sulfatase family. Structure 9:483–491

    Article  PubMed  CAS  Google Scholar 

  • Bond CS, Clements PR, Ashby SJ, Collyer CA, Harrop SJ, Hopwood JJ, Guss JM (1997) Structure of a human lysosomal sulfatase. Structure 5:277–289

    Article  PubMed  CAS  Google Scholar 

  • Carlson BL, Ballister ER, Skordalakes E, King DS, Breidenbach MA, Gilmore SA, Berger JM, Bertozzi CR (2008) Function and structure of a prokaryotic formylglycine-generating enzyme. J Biol Chem 283:20117–20125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Correc G, Barabanova A, Tuvikene R, Truus K, Yermak I, Helbert W (2012) Comparison of the structures of hybrid κ-/β-carrageenans extracted from Furcellaria lumbricalis and Tichocarpus crinitus. Carbohydr Polym 88:31–36

    Article  CAS  Google Scholar 

  • Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36(Web Server issue):W465–W469

  • Dierks T, Schmidt B, von Figura K (1997) Conversion of cysteine to formyl-glycine: a protein modification in the endoplasmic reticulum. Proc Natl Acad Sci U S A 94:11963–11968

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dierks T, Miech C, Hummerjohann J, Schmidt B, Kertesz MA, von Figura K (1998) Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine. J Biol Chem 273:25560–25564

    Article  PubMed  CAS  Google Scholar 

  • Dierks T, Lecca MR, Schlotterhose P, Schmidt B, von Figura K (1999) Sequence determinants directing conversion of cysteine to formylglycine in eukaryotic sulfatases. EMBO J 18:2084–2091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Genicot S, Groisillier A, Rogniaux H, Meslet-Cladière L, Barbeyron T, Helbert W (2014) Discovery of a novel iota-carrageenan sulfatase isolated from the marine bacterium Pseudoalteromonas carrageenovora. Front Chem 2:1–15

    Article  CAS  Google Scholar 

  • Genicot-Joncour S, Poinas A, Richard O, Potin P, Rudolph B, Kloareg B, Helbert W (2009) The cyclization of the 3,6-anhydro ring of iota-carrageenan is catalyzed by two d-galactose-2,6-sulfurylases in the red alga Chondrus crispus. Plant Physiol 151:1609–1616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Groisillier A, Hervé C, Jeudy A, Rebuffet E, Pluchon PF, Chevolot Y, Flament D, Geslin C, Morgado IM, Power D, Branno M, Moreau H, Michel G, Boyen C, Czjzek M (2010) Marine-express: taking advantage of high throughput cloning and expression strategies for the post-genomic analysis of marine organisms. Microb Cell Factories 9:45–56

    Article  CAS  Google Scholar 

  • Guibet M, Boulenguer P, Mazoyer J, Kervarec N, Antonopoulos A, Lafosse M, Helbert W (2008) Composition and distribution of carrabiose moieties in hybrid κ-/ι-carrageenans using carrageenases. Biomacromolecules 9:408–415

    Article  PubMed  CAS  Google Scholar 

  • Hatada Y, Mizuno M, Li ZJ, Ohta Y (2011) Hyper-production and characterization of the iota-crrageenase useful for iota-carrageenan oligosaccharide production from a deep-sea bacterium, Microbulbifer thermotolerans JAMB-A94(T), and insight into the unusual catalytic mechanism. Mar Biotechnol 13:411–422

    Article  PubMed  CAS  Google Scholar 

  • Henrissat B, Davies GJ (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7:637–644

    Article  PubMed  CAS  Google Scholar 

  • Knutsen SV, Grasdalen H (1992) Analysis of carrageenans by enzymatic degradation gel filtration and 1H NMR spectroscopy. Carbohydr Polym 19:199–210

    Article  CAS  Google Scholar 

  • Knutsen SV, Myslabodski D, Larsen B, Usov A (1994) A modified system of nomenclature for red algal galactans. Bot Mar 37:163–169

    Article  CAS  Google Scholar 

  • Kolender AA, Matulewicz MC (2004) Desulfation of sulfated galactans with chlorotrimethylsilane. Characterization of β-carrageenan by 1H-NMR spectroscopy. Carbohydr Res 339:1619–1629

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Dudley J, Nei M, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laos K, Ring S (2005) Characterisation of furcellaran from Furcellaria lumbricalis (Rhodophyta). J Appl Phycol 17:461–464

    Article  Google Scholar 

  • Larre C, Penninck S, Bouchet B, Lollier V, Tranquet O, Denery-Papini S, Guillon F, Rogniaux H (2010) Brachypodium distachyon grain: identification and subcellular localization of storage proteins. J Exp Bot 61:1771–1783

  • McLean MW, Williamson FB (1979) Glycosulfatase from Pseudomonas carrageenovora—purification and some properties. Eur J Biochem 101:497–505

    Article  PubMed  CAS  Google Scholar 

  • McLean MW, Williamson FB (1981) Neocarratetraose 4-O-monosulfate β-hydrolase from Pseudomonas carrageenovora. Eur J Biochem 113:447–456

    Article  PubMed  CAS  Google Scholar 

  • Myette JR, Soundararajan V, Shriver Z, Raman R, Sasisekharan R (2009) Heparin/heparan sulfate 6-O-sulfatase from Flavobacterium heparinum. Integrated structural and biochemical investigation of enzyme active site and substrate specificity. J Biol Chem 284:35177–35188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217

    Article  PubMed  CAS  Google Scholar 

  • Préchoux A, Genicot S, Rogniaux H, Helbert W (2013) Controlling carrageenan structure using a formylglycine-dependent sulfatase, an endo-4S-iota-carrageenan sulfatase. Mar Biotechnol 15:265–274

    Article  PubMed  CAS  Google Scholar 

  • Raman R, Myette JR, Shriver Z, Pojasek K, Venkataraman G, Sasisekharan R (2003) The heparin/heparan sulfate 2-O-sulfatase from Flavobacterium heparinum—a structural and biochemical study of the enzyme active site and saccharide substrate specificity. J Biol Chem 278:12167–12174

    Article  PubMed  CAS  Google Scholar 

  • Renn DW, Santos GA, Dumont LE, Parent CA, Stanley NF, Stancioff DJ, Guisely KB (1993) Beta-carrageenan—isolation and characterization. Carbohydr Polym 22:247–250

    Article  CAS  Google Scholar 

  • Rivera-Colón Y, Schutsky EK, Kita AZ, Garman SC (2012) The structure of human GALNS reveals the molecular basis for mucopolysaccharidosis IV A. J Mol Biol 423:736–751

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Robert X, Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42(Web Server issue):W320–W324

  • Sidhu NS, Schreiber K, Proepper K, Becker S, Uson I, Sheldrick GM, Gaertner J, Kraetzner R, Steinfeld R (2014) Structure of sulfamidase provides insight into the molecular pathology of mucopolysaccharidosis IIIA. Acta Crystallogr D70:1321–1335

    Google Scholar 

  • Studier FW (2005) Protein production by auto-induction in high-density shaking cultures. Protein Expr Purif 41:207–234

    Article  PubMed  CAS  Google Scholar 

  • Takano R (2002) Desulfation of sulfated carbohydrates. Trends Glycosci Glycotechnol 14:343–351

    Article  CAS  Google Scholar 

  • Usov AI (2011) Polysaccharides of the red algae. Adv Carbohydr Chem Biochem 65:115–217

    Article  PubMed  CAS  Google Scholar 

  • von Bülow R, Schmidt B, Dierks T, von Figura K, Usón I (2001) Crystal structure of an enzyme-substrate complex provides insight into the interaction between human arylsulfatase A and its substrates during catalysis. J Mol Biol 305:269–277

    Article  CAS  Google Scholar 

  • Weigl J, Yaphe W (1966) Glycosulfatase of Pseudomonas carrageenovora: desulfation of disaccharide from κ-carrageenan. Can J Microbiol 12:874–876

    Article  CAS  Google Scholar 

  • Yermak IM, Kim YH, Titlynov EA, Isakov VV, Solov’eva TF (1999) Chemical structure and gel properties of carrageenans from algae belonging to the Gigartinaceae and Tichocarpaceae, collected from the Russian Pacific coast. J Appl Phycol 11:41–48

    Article  CAS  Google Scholar 

  • ZoBell CE (1941) Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J Mar Res 4:41–75

    Google Scholar 

Download references

Acknowledgments

The research leading to these results received funding from the European Community Seventh Framework Programme (FP7) under grant agreement no. 222628. Mass spectrometry analyses were conducted at the BIBS facility at the INRA Biopolymers Interaction Assemblies research unit (www.bibs.inra.fr). We thank Mathilde Joint for her excellent technical assistance in LC-MS/MS. Special thanks to Nelly Kervarec from the “University of Bretagne Occidentale” for her expertise in the NMR analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Helbert.

Electronic Supplementary Material

Structural alignment of proteins annotated as sulfatases in P. atlantica T6c and other bacterial and human sulfatases that have been biochemically and structurally characterized. The alignment calculated with T-Coffee in mode Expresso (Notredame et al. 2000) is presented with ESPript (Robert and Gouet 2014). Conserved amino acids and highly conserved amino acids are underlined in red and yellow, respectively. Alpha-helices and beta-strands are shown as helices (α1 to α15) and arrows (β1 to β18), respectively, and beta-turns are indicated by TT.

(JPG 575 kb)

(JPG 474 kb)

(JPG 593 kb)

(JPG 476 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Préchoux, A., Genicot, S., Rogniaux, H. et al. Enzyme-Assisted Preparation of Furcellaran-Like κ-/β-Carrageenan. Mar Biotechnol 18, 133–143 (2016). https://doi.org/10.1007/s10126-015-9675-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-015-9675-3

Keywords

Navigation