Skip to main content
Log in

Mapping QTL for Resistance Against Viral Nervous Necrosis Disease in Asian Seabass

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Viral nervous necrosis disease (VNN), caused by nervous necrosis virus (NNV), leads to mass mortality in mariculture. However, phenotypic selection for resistance against VNN is very difficult. To facilitate marker-assisted selection (MAS) for resistance against VNN and understanding of the genetic architecture underlying the resistance against this disease, we mapped quantitative trait loci (QTL) for resistance against VNN in Asian seabass. We challenged fingerlings at 37 days post-hatching (dph), from a single back-cross family, with NNV at a concentration of 9 × 106 TCID50/ml for 2 h. Daily mortalities were recorded and collected. A panel of 330 mortalities and 190 surviving fingerlings was genotyped using 149 microsatellites with 145 successfully mapped markers covering 24 linkage groups (LGs). Analysis of QTL for both resistance against VNN and survival time was conducted using interval mapping. Five significant QTL located in four LGs and eight suggestive QTL in seven LGs were identified for resistance. Another five significant QTL in three LGs and five suggestive QTL in three LGs were detected for survival time. One significant QTL, spanning 3 cM in LG20, was identified for both resistance and survival time. These QTL explained 2.2–4.1 % of the phenotypic variance for resistance and 2.2–3.3 % of the phenotypic variance for survival time, respectively. Our results suggest that VNN resistance in Asian seabass is controlled by many loci with small effects. Our data provide information for fine mapping of QTL and identification of candidate genes for a better understanding of the mechanism of disease resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Azad I, Jithendran K, Shekhar M, Thirunavukkarasu A, de la Pena L (2006) Immunolocalisation of nervous necrosis virus indicates vertical transmission in hatchery produced Asian sea bass (Lates calcarifer Bloch)—a case study. Aquaculture 255:39–47

    Article  Google Scholar 

  • Azad I et al (2005) Nodavirus infection causes mortalities in hatchery produced larvae of Lates calcarifer: first report from India. Dis Aquat Org 63:113–118

    Article  PubMed  CAS  Google Scholar 

  • Baerwald M, Petersen J, Hedrick R, Schisler G, May B (2011) A major effect quantitative trait locus for whirling disease resistance identified in rainbow trout (Oncorhynchus mykiss). Heredity 106:920–926

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Center C (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247

    Article  Google Scholar 

  • Chong S, Ngoh G, Chew-Lim M (1990) Study of three tissue culture viral isolates from marine foodfish. Singap J Prim Ind 18:54–57

    Google Scholar 

  • Chong S, Ngoh G, Ng M, Chu K (1987) Growth of lymphocystis virus in a sea bass, Lates calcarifer (Bloch) cell line. Singap Vet J 11:78–85

    Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cui Y, Wang H, Qiu X, Liu H, Yang R (2015) Bayesian analysis for genetic architectures of body weights and morphological traits using distorted markers in Japanese flounder Paralichthys olivaceus. Mar Biotechnol. doi:10.1007/s10126-015-9646-8

  • Dekkers JC, Hospital F (2002) The use of molecular genetics in the improvement of agricultural populations. Nat Rev Genet 3:22–32

    Article  PubMed  CAS  Google Scholar 

  • Dorson M, Quillet E, Hollebecq M, Torhy C, Chevassus B (1995) Selection of rainbow trout resistant to viral haemorrhagic septicaemia virus and transmission of resistance by gynogenesis. Vet Res 26:361–368

    PubMed  CAS  Google Scholar 

  • FAO (2006) Food and Agirculture Organization of the United Nations (FAO). Cultured aquatic species information programme - Lates calcarifer (Block, 1790). Rome. http://www.fao.org/fishery/culturedspecies/Lates_calcarifer/en. Accessed 1 June 2015

  • Fenner B, Du Q, Goh W, Thiagarajan R, Chua H, Kwang J (2006) Detection of betanodavirus in juvenile barramundi, Lates calcarifer (Bloch), by antigen capture ELISA. J Fish Dis 29:423–432

    Article  PubMed  CAS  Google Scholar 

  • Fuji K, Kobayashi K, Hasegawa O, Coimbra MRM, Sakamoto T, Okamoto N (2006) Identification of a single major genetic locus controlling the resistance to lymphocystis disease in Japanese flounder (Paralichthys olivaceus). Aquaculture 254:203–210

    Article  CAS  Google Scholar 

  • Geng X et al (2015) A genome-wide association study in catfish reveals the presence of functional hubs of related genes within QTLs for columnaris disease resistance. BMC Genomics 16:196

    Article  PubMed  PubMed Central  Google Scholar 

  • Georges M (2007) Mapping, fine mapping, and molecular dissection of quantitative trait Loci in domestic animals. Annu Rev Genomics Hum Genet 8:131–162

    Article  PubMed  CAS  Google Scholar 

  • Gilbey J, Verspoor E, Mo TA, Jones C, Noble L (2006) Identification of genetic markers associated with Gyrodactylus salaris resistance in Atlantic salmon Salmo salar. Dis Aquat Org 71:119

    Article  PubMed  CAS  Google Scholar 

  • Gorjanc G, Cleveland MA, Houston RD, Hickey JM (2015) Potential of genotyping-by-sequencing for genomic selection in livestock populations. Genet Sel Evol 47:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Gutierrez AP, Lubieniecki KP, Fukui S, Withler RE, Swift B, Davidson WS (2014) Detection of quantitative trait loci (QTL) related to grilsing and late sexual maturation in Atlantic salmon (Salmo salar). Mar Biotechnol 16:103–110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haddad-Boubaker S, Bigarré L, Bouzgarou N, Megdich A, Baud M, Cabon J, Chéhida NB (2013) Molecular epidemiology of betanodaviruses isolated from sea bass and sea bream cultured along the Tunisian coasts. Virus Genes 46:412–422

    Article  PubMed  CAS  Google Scholar 

  • Hodneland K, Garcia R, Balbuena J, Zarza C, Fouz B (2011) Real-time RT-PCR detection of betanodavirus in naturally and experimentally infected fish from Spain. J Fish Dis 34:189–202

    Article  PubMed  CAS  Google Scholar 

  • Houston RD et al (2010) The susceptibility of Atlantic salmon fry to freshwater infectious pancreatic necrosis is largely explained by a major QTL. Heredity 105:318–327

    Article  PubMed  CAS  Google Scholar 

  • Houston RD et al (2008) Major quantitative trait loci affect resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar). Genetics 178:1109–1115

    Article  PubMed  PubMed Central  Google Scholar 

  • Houston RD et al (2014) Development and validation of a high density SNP genotyping array for Atlantic salmon (Salmo salar). BMC Genomics 15:90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karber VG (1931) 50% end point calculation. Arch Exp Pathol Pharmakol 162:480–483

    Article  Google Scholar 

  • Laghari MY et al (2014) Mapping QTLs for swimming ability related traits in Cyprinus carpio L. Mar Biotechnol 16:629–637

    Article  PubMed  CAS  Google Scholar 

  • Li H, Bradbury P, Ersoz E, Buckler ES, Wang J (2011) Joint QTL linkage mapping for multiple-cross mating design sharing one common parent. PLoS One 6:e17573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu S et al (2014) Development of the catfish 250K SNP array for genome-wide association studies. BMC Res Notes 7:135

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu S, Vallejo RL, Gao G, Palti Y, Weber GM, Hernandez A, Rexroad CE 3rd (2015) Identification of single-nucleotide polymorphism markers associated with cortisol response to crowding in rainbow trout. Mar Biotechnol 17:328–337

    Article  PubMed  CAS  Google Scholar 

  • López-Muñoz A et al (2012) Viral nervous necrosis virus persistently replicates in the central nervous system of asymptomatic gilthead seabream and promotes a transient inflammatory response followed by the infiltration of IgM+ B lymphocytes. Dev Comp Immunol 37:429–437

    Article  PubMed  CAS  Google Scholar 

  • Lu X, Wang H, Liu B, Xiang J (2013) Three EST-SSR markers associated with QTL for the growth of the clam Meretrix meretrix revealed by selective genotyping. Mar Biotechnol 15:16–25

    Article  PubMed  CAS  Google Scholar 

  • Maeno Y, de la Peña LD, Cruz-Lacierda ER (2004) Mass mortalities associated with viral nervous necrosis in hatchery-reared sea bass Lates calcarifer in the Philippines. JARQ-Jpn Agr Res Q 38:69–73

    Article  Google Scholar 

  • Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    PubMed  PubMed Central  CAS  Google Scholar 

  • Moen T, Baranski M, Sonesson AK, Kjøglum S (2009) Confirmation and fine-mapping of a major QTL for resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar): population-level associations between markers and trait. BMC Genomics 10:368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakai T, Sugaya T, Nishioka T, Mushiake K, Yamashita H (2009) Current knowledge on viral nervous necrosis (VNN) and its causative betanodaviruses. Isr J Aquacult Bamidgeh 61:198–207

    Google Scholar 

  • Nelson JS (2006) Fishes of the world, 4th edn. John Wiley & Sons, New Jersey

    Google Scholar 

  • Nguyen N, Ponzoni R (2006) Perspectives from agriculture: advances in livestock breeding-implications for aquaculture genetics. NAGA, WorldFish Center Quarterly 29:39–45

    Google Scholar 

  • Ødegård J, Baranski M, Gjerde B, Gjedrem T (2011a) Methodology for genetic evaluation of disease resistance in aquaculture species: challenges and future prospects. Aquac Res 42:103–114

    Article  Google Scholar 

  • Ødegård J et al (2011b) Quantitative genetics of taura syndrome resistance in pacific white shrimp (Penaeus vannamei): a cure model approach. Genet Sel Evol 43:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Ødegård J, Sommer A-I, Præbel AK (2010) Heritability of resistance to viral nervous necrosis in Atlantic cod (Gadus morhua L.). Aquaculture 300:59–64

    Article  Google Scholar 

  • Olveira J, Souto S, Dopazo C, Bandín I (2013) Isolation of betanodavirus from farmed turbot Psetta maxima showing no signs of viral encephalopathy and retinopathy. Aquaculture 406:125–130

    Article  Google Scholar 

  • Ozaki A et al (2013) Quantitative trait loci (QTL) associated with resistance to a monogenean parasite (Benedenia seriolae) in yellowtail (Seriola quinqueradiata) through genome wide analysis. PLoS One 8:e64987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parameswaran V, Kumar SR, Ahmed VI, Hameed AS (2008) A fish nodavirus associated with mass mortality in hatchery-reared Asian Sea bass, Lates calcarifer. Aquaculture 275:366–369

    Article  Google Scholar 

  • Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One 7:e37135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ransangan J, Manin BO (2010) Mass mortality of hatchery-produced larvae of Asian seabass, Lates calcarifer (Bloch), associated with viral nervous necrosis in Sabah, Malaysia. Vet Microbiol 145:153–157

    Article  PubMed  Google Scholar 

  • Rodríguez-Ramilo ST et al (2014) Identification of quantitative trait loci associated with resistance to viral haemorrhagic septicaemia (VHS) in turbot (Scophthalmus maximus): a comparison between bacterium, parasite and virus diseases. Mar Biotechnol 16:265–276

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Ramilo ST et al (2011) QTL detection for Aeromonas salmonicida resistance related traits in turbot (Scophthalmus maximus). BMC Genomics 12:541

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Ramilo S et al (2013) Uncovering QTL for resistance and survival time to Philasterides dicentrarchi in turbot (Scophthalmus maximus). Anim Genet 44:149–157

    Article  PubMed  Google Scholar 

  • Shetty M, Maiti B, Santhosh KS, Venugopal MN, Karunasagar I (2012) Betanodavirus of marine and freshwater fish: distribution, genomic organization, diagnosis and control measures. Indian J Virol 23:114–123

    Article  PubMed  PubMed Central  Google Scholar 

  • Sneller C, Mather D, Crepieux S (2009) Analytical approaches and population types for finding and utilizing QTL in complex plant populations. Crop Sci 49:363–380

    Article  Google Scholar 

  • Thodesen J, Gjedrem T (2006) Breeding programs on Atlantic salmon in Norway: lessons learned. In: Ponzoni R, Acosta B, Ponniah A (eds) Development of aquatic animal genetic improvement and dissemination programs: current status and action plans, vol 73. WorldFish Center, Penang, Malaysia, pp 22–26

    Google Scholar 

  • Vallejo RL, Palti Y, Liu S, Evenhuis JP, Gao G, Rexroad CE 3rd, Wiens GD (2014) Detection of QTL in rainbow trout affecting survival when challenged with Flavobacterium psychrophilum. Mar Biotechnol 16:349–360

    Article  PubMed  CAS  Google Scholar 

  • Van Ooijen J (2011) Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genet Res (Camb) 93:343–349

    Article  Google Scholar 

  • Van Ooijen J, Kyazma B (2009) MapQTL 6. Software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma BV, Wageningen, Netherlands

    Google Scholar 

  • Veerkamp R, Brotherstone S, Engel B, Meuwissen T (2001) Analysis of censored survival data using random regression models. Anim Sci 72:1–10

    Google Scholar 

  • Vike S, Nylund S, Nylund A (2009) ISA virus in Chile: evidence of vertical transmission. Arch Virol 154:1–8

    Article  PubMed  CAS  Google Scholar 

  • Vinas A, Taboada X, Vale L, Robledo D, Hermida M, Vera M, Martinez P (2012) Mapping of DNA sex-specific markers and genes related to sex differentiation in turbot (Scophthalmus maximus). Mar Biotechnol 14:655–663

    Article  PubMed  CAS  Google Scholar 

  • Visscher PM, Thompson R, Haley CS (1996) Confidence intervals in QTL mapping by bootstrapping. Genetics 143:1013–1020

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wang CM et al (2011) A high-resolution linkage map for comparative genome analysis and QTL fine mapping in Asian seabass, Lates calcarifer. BMC Genomics 12:174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang CM et al (2007) A microsatellite linkage map of Barramundi, Lates calcarifer. Genetics 175:907–915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang L et al (2014) A genome scan for quantitative trait loci associated with Vibrio anguillarum infection resistance in Japanese flounder (Paralichthys olivaceus) by bulked segregant analysis. Mar Biotechnol 16:513–521

    Article  PubMed  CAS  Google Scholar 

  • Xia JH, Feng F, Lin G, Wang CM, Yue GH (2010) A first generation BAC-based physical map of the Asian seabass (Lates calcarifer). PLoS One 5:e11974

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xia JH et al (2014) Mapping quantitative trait loci for omega-3 fatty acids in Asian seabass. Mar Biotechnol 16:1–9

    Article  PubMed  CAS  Google Scholar 

  • Xia JH, Yue GH (2010) Identification and analysis of immune-related transcriptome in Asian seabass Lates calcarifer. BMC Genomics 11:356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu Y (2010) Molecular plant breeding. CABI, Wallingford, UK

    Book  Google Scholar 

  • Xu Y, Zhu Z, Lo L, Wang C, Lin G, Feng F, Yue G (2006) Characterization of two parvalbumin genes and their association with growth traits in Asian seabass (Lates calcarifer). Anim Genet 37:266–268

    Article  PubMed  CAS  Google Scholar 

  • Ye H, Liu Y, Liu X, Wang X, Wang Z (2014) Genetic mapping and QTL analysis of growth traits in the large yellow croaker Larimichthys crocea. Mar Biotechnol 16:729–738

    Article  PubMed  CAS  Google Scholar 

  • Yu Z, Guo X (2006) Identification and mapping of disease-resistance QTLs in the eastern oyster, Crassostrea virginica Gmelin. Aquaculture 254:160–170

    Article  CAS  Google Scholar 

  • Yue G, Li Y, Orban L (2001) Characterization of microsatellites in the IGF-2 and GH genes of Asian seabass (Lates calcarifer). Mar Biotechnol 3:1–3

    Article  PubMed  CAS  Google Scholar 

  • Yue GH (2014) Recent advances of genome mapping and marker-assisted selection in aquaculture. Fish Fish 15:376–396

    Article  Google Scholar 

  • Yue GH, Orban L (2005) A simple and affordable method for high-throughput DNA extraction from animal tissues for polymerase chain reaction. Electrophoresis 26:3081–3083

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Jimmy Kwang and the Agri-food and Veterinary Authority of Singapore (AVA) for providing the NNV and Asian seabass cell lines. The project was supported by the National Research Foundation, Prime Minister’s Office, Singapore under its Competitive Research Program (CPR Award No. NRF-CPR7-2010-01) and the Singapore Ministry of Education Tier 1 grant through R-154-000-593-112.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sek-Man Wong or Gen Hua Yue.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

149 microsatellite markers used for mapping QTL in Asian seabass. (DOCX 56 kb)

Table S2

The reconstructed linkage groups of Asian seabass. (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Wang, L., Wan, Z.Y. et al. Mapping QTL for Resistance Against Viral Nervous Necrosis Disease in Asian Seabass. Mar Biotechnol 18, 107–116 (2016). https://doi.org/10.1007/s10126-015-9672-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-015-9672-6

Keywords

Navigation