Skip to main content
Log in

Cloning and Characterization of a Pyruvate Carboxylase Gene from Penicillium rubens and Overexpression of the Genein the Yeast Yarrowia lipolytica for Enhanced Citric Acid Production

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

In this study, a pyruvate carboxylase gene (PYC1) from a marine fungus Penicillium rubens I607 was cloned and characterized. ORF of the gene (accession number: KM397349.1) had 3534 bp encoding 1177 amino acids with a molecular weight of 127.531 kDa and a PI of 6.20. The promoter of the gene was located at −1200 bp and contained a TATAA box, several CAAT boxes and a sequence 5′-SYGGRG-3′. The PYC1 deduced from the gene had no signal peptide, was a homotetramer (α4), and had the four functional domains. After expression of the PYC1 gene from the marine fungus in the marine-derived yeast Yarrowia lipolytica SWJ-1b, the transformant PR32 obtained had much higher specific pyruvate carboxylase activity (0.53 U/mg) than Y. lipolytica SWJ-1b (0.07 U/mg), and the PYC1 gene expression (133.8 %) and citric acid production (70.2 g/l) by the transformant PR32 were also greatly enhanced compared to those (100 % and 27.3 g/l) by Y. lipolytica SWJ-1b. When glucose concentration in the medium was 60.0 g/l, citric acid (CA) concentration formed by the transformant PR32 was 36.1 g/l, leading to conversion of 62.1 % of glucose into CA. During a 10-l fed-batch fermentation, the final concentration of CA was 111.1 ± 1.3 g/l, the yield was 0.93 g/g, the productivity was 0.46 g/l/h, and only 1.72 g/l reducing sugar was left in the fermented medium within 240 h. HPLC analysis showed that most of the fermentation products were CA. However, minor malic acid and other unknown products also existed in the culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL Workspace: a web-based environment for protein structure homology modeling. Bioinformatics 2:195–201

    Article  CAS  Google Scholar 

  • Arzumanov T, Shishkanova N, Finogenova T (2000) Biosynthesis of citric acid by Yarrowia lipolytica repeat-batch culture on ethanol. Appl Microbiol Biotechnol 53(5):525–529

    Article  PubMed  CAS  Google Scholar 

  • Bologna FP, Andreo CS, Drincovich MF (2007) Escherichia coli malic enzymes: two isoforms with substantial differences in kinetic properties, metabolic regulation, and structure. J Bacteriol 189:5937

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–253

    Article  PubMed  CAS  Google Scholar 

  • Camp BJ, Farmer L (1967) A rapid spectrophotometric method for the determination of citric acid in blood. Clin Chem 13:501–505

    PubMed  CAS  Google Scholar 

  • Chi ZM, Liu J, Zhang W (2001) Trehalose accumulation from soluble starch by Saccharomycopsis fibuligera sdu. Enzym Microb Technol 28:240–245

    Article  CAS  Google Scholar 

  • Chi Z, Wang ZP, Wang GY, Khan I, Chi ZM (2014) Microbial biosynthesis and secretion of L-malic acid and its applications. Crit Rev Biotechnol doi:10.3109/07388551.2014.924474

  • Forster A, Aurich A, Mauersberger S, Barth G (2007a) Citric acid production from sucrose using a recombinant strain of the yeast Yarrowia lipolytica. Appl Microbiol Biotechnol 75:1409–1417

    Article  PubMed  CAS  Google Scholar 

  • Forster A, Jacobs K, Juretzek T, Mauersberger S, Barth G (2007b) Overexpression of the ICL1 gene changes the product ratio of citric acid production by Yarrowia lipolytica. Appl Microbiol Biotechnol 77:861–869

    Article  PubMed  CAS  Google Scholar 

  • Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62:334–361

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ikram-ul H, Khurshid S, Ali S, Ashraf H, Qadeer MA, Rajoka MI (2001) Mutation of Aspergillus niger for hyperproduction of citric acid from black strap molasses. World J Microbiol Biotechnol 17(1):35–37

    Article  Google Scholar 

  • Ikram-ul H, Ali S, Qadeer MA, Javed I (2004) Citric acid production by selected mutants of Aspergillus niger from cane molasses. Bioresour Technol 93(2):125–130

    Article  PubMed  CAS  Google Scholar 

  • Jitrapakdee S, St Maurice M, Rayment I, Cleland WW, Wallace JC, Wallace JC, Attwood PV (2008) Structure, mechanism and regulation of pyruvate carboxylase. Biochem J 413:369–387

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kamzolova SV, Fatykhova AR, Dedyukhina EG, Anastassiadis SG, Golovchenko NP, Morgunov IG (2011) Citric acid production by yeast grown on glycerol-containing waste from biodiesel industry. Food Technol Biotechnol 49(1):65

    CAS  Google Scholar 

  • Karaffa L, Kubicek CP (2003) Aspergillus niger citric acid accumulation: do we understand this well working black box? Appl Microbiol Biotechnol 61:189–196

    Article  PubMed  CAS  Google Scholar 

  • Khan I, Nazir K, Wang ZP, Liu GL, Chi ZM (2014) Calcium malate overproduction by Penicillium viticola 152 using the medium containing corn steep liquor. Appl Microbiol Biotechnol 98:1539–1546

  • Lietzan AD, Maurice MS (2013) Insights into the carboxyltransferase reaction of pyruvate carboxylase from the structures of bound product and intermediate analogs. Biochem Biophys Res Commun 441:377–382

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lin H, San KY, Bennett GN (2005) Effect of Sorghum vulgare phosphoenolpyruvate carboxylase and Lactococcus lactis pyruvate carboxylase coexpression on succinate production in mutant strains of Escherichia coli. Appl Microbiol Biotechnol 67:515–523

    Article  PubMed  CAS  Google Scholar 

  • Liu XY, Chi Z, Liu GL, Wang F, Madzak C, Chi ZM (2010) Inulin hydrolysis and citric acid production from inulin using the surface-engineered Yarrowia lipolytica displaying inulinase. Metab Eng 12:469–476

    Article  PubMed  CAS  Google Scholar 

  • Liu GL, Wang DS, Wang LF, Zhao SF, Chi ZM (2011) Mig1 is involved in mycelial formation and expression of the genes encoding extracellular enzymes in Saccharomycopsis fibuligera A11. Fungal Genet Biol 48:904–913

    Article  PubMed  CAS  Google Scholar 

  • Liu XY, Chi Z, Liu GL, Madzak C, Chi ZM (2013) Both decrease in ACL1 gene expression and increase in ICL1 gene expression in marine-derived yeast Yarrowia lipolytica expressing INU1 gene enhance citric acid production from inulin. Mar Biotechnol 15:26–36

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Lv J, Zhang T, Deng Y (2014) Direct conversion of pretreated straw cellulose into citric acid by co-cultures of Yarrowia lipolytica: SWJ-1b and immobilized Trichoderma reesei mycelium. Appl Biochem Biotechnol 173(2):501–509

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liu X, Lv J, Xu J, Zhang T, Deng Y, He J (2015) Citric acid production in Yarrowia lipolytica: SWJ-1b yeast when grown on waste cooking oil. Appl Biochem Biotechnol 175(5):2347–2356

    Article  PubMed  CAS  Google Scholar 

  • Makri A, Fakas S, Aggelis G (2010) Metabolic activities of biotechnological interest in Yarrowia lipolytica grown on glycerol in repeated batch cultures. Bioresour Technol 101:2351–2358

    Article  PubMed  CAS  Google Scholar 

  • Mourya S, Jauhri K (2000) Production of citric acid from starch-hydrolysate by Aspergillus niger. Microbiol Res 155(1):37–44

    Article  PubMed  CAS  Google Scholar 

  • Ochoa-Estopier A, Guillouet SE (2014) D-stat culture for studying the metabolic shifts from oxidative metabolism to lipid accumulation and citric acid production in Yarrowia lipolytica. J Biotechnol 170:35–41

    Article  PubMed  CAS  Google Scholar 

  • Otto C, Yovkova V, Aurich A, Mauersberger S, Barth G (2012) Variation of the by-product spectrum during α-ketoglutaric acid production from raw glycerol by overexpression of fumarase and pyruvate carboxylase genes in Yarrowia lipolytica. Appl Microbiol Biotechnol 95:905–917

    Article  PubMed  CAS  Google Scholar 

  • Papanikolaou S, Galiotou-Panayotou M, Chevalot I, Komaitis M, Marc I, Aggelis G (2006) Influence of glucose and saturated free-fatty acid mixtures on citric acid and lipid production by Yarrowia lipolytica. Curr Microbiol 52(2):134–142

    Article  PubMed  CAS  Google Scholar 

  • Papanikolaou S, Galiotou-Panayotou M, Fakas S, Komaitis M, Aggelis G (2008) Citric acid production by Yarrowia lipolytica: cultivated on olive-mill wastewater-based media. Biores Technol 99(7):2419–2428

  • Papanikolaou S, Chatzifragkou A, Fakas S, Galiotou-Panayotou M, Komaitis M, Nicaud JM, Aggelis G (2009) Biosynthesis of lipids and organic acids by Yarrowia lipolytica trains cultivated on glucose. Eur J Lipid Sci Technol 111:1221–1232

  • Papanikolaou S, Beopoulos A, Koletti A, Thevenieau F, Koutinas AA, Nicaud JM, Aggelis G (2013) Importance of the methyl-citrate cycle on glycerol metabolism in the yeast Yarrowia lipolytica. J Biotechnol 168:303–314

    Article  PubMed  CAS  Google Scholar 

  • Peksel A, Torres NV, Liu J, Juneau G (2002) 13C-NMR analysis of glucose metabolism during acid production by Aspergillus niger. Appl Microbiol Biotechnol 58:157–163

    Article  PubMed  CAS  Google Scholar 

  • Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Möckel B, Sahm H, Eikmanns BJ (2001) Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. J Mol Microbiol Biotechnol 3:295–300

    PubMed  CAS  Google Scholar 

  • Ratledge C, Wynn JP (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–51

    Article  PubMed  CAS  Google Scholar 

  • Reinwald S, Weaver CM, Kester JJ (2008) The health benefits of calcium citrate malate: a review of the supporting science. Adv Food Nutr Res 54:219–346

    Article  PubMed  CAS  Google Scholar 

  • Rywinska A, Rymowicz W, Zarowska B, Wojtatowicz M (2009) Biosynthesis of citric acid from glycerol by acetate mutants of Yarrowia lipolytica in fed-batch fermentation. Food Technol Biotechnol 47(1):1–6

    CAS  Google Scholar 

  • Rywińska A, Rymowicz W (2010) High-yield production of citric acid by Yarrowia lipolytica: on glycerol in repeated-batch bioreactors. J Ind Microbiol Biotechnol 37(5):431–435

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Beijing, pp 367–370 (Chinese translated edn)

    Google Scholar 

  • Shojaosadati SA, Babaeipour V (2002) Citric acid production from apple pomace in multi-layer packed bed solid-state bioreactor. Proc Biochem 37(8):909–914

  • Spiro RG (1966) Analysis of sugars found in glycoproteins. Methods Enzymol 8:3–26

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Tomaszewska L, Rakicka M, Rymowicz W, Rywińska A (2014) A comparative study on glycerol metabolism to erythritol and citric acid in Yarrowia lipolytica yeast cells. FEMS Yeast Res 14(6):966–976

    Article  PubMed  CAS  Google Scholar 

  • Tran C, Sly L, Mitchell D (1998) Selection of a strain of Aspergillus for the production of citric acid from pineapple waste in solid-state fermentation. World J Microbiol Biotechnol 4(3):399–404

    Article  Google Scholar 

  • Wang F, Yue LX, Wang L, Madzak C, Li J, Wang XH, Chi ZM (2009) Genetic modification of the marine-derived yeast Yarrowia lipolytica with high-protein content using a GPI-anchor-fusion expression system. Biotechnol Prog 25:1297–1303

    Article  PubMed  CAS  Google Scholar 

  • Wang ZP, Wang GY, Khan I, Chi ZM (2013a) High-level production of calcium malate from glucose by Penicillium sclerotiorum K302. Bioresour Technol 143:674–677

    Article  PubMed  CAS  Google Scholar 

  • Wang LF, Wang ZP, Liu XY, Chi ZM (2013b) Citric acid production from extract of Jerusalem artichoke tubers by the genetically engineered yeast Yarrowia lipolytica: strain 30 and purification of citric acid. Bioprocess Biosyst Eng 36(11):1759–1766

    Article  PubMed  CAS  Google Scholar 

  • Wang GY, Zhang Y, Chi Z, Liu GL, Wang ZP, Chi ZM (2015a) Role of pyruvate carboxylase in accumulation of intracellular lipid of the oleaginous yeast Yarrowia lipolytica ACA-DC 50109. Appl Microbiol Biotechnol 99:1637–1645

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Zhang J, Cao Z, Wang Y, Gao Q, Zhang J, Wang D (2015b) Inhibition of oxidative phosphorylation for enhancing citric acid production by Aspergillus niger. Microb Cell Fact 14(1):1–12

  • Xuan JM, Fournier P, Gaillardin C (1988) Cloning of the LYS5 gene encoding saccharopine dehydrogenase. Curr Genet 14:15–21

    Article  CAS  Google Scholar 

  • Yin X, Madzak C, Du G, Zhou J, Chen J (2012) Enhanced alpha-ketoglutaric acid production in Yarrowia lipolytica WSH-Z06 by regulation of the pyruvate carboxylation pathway. Appl Microbiol Biotechnol 96:1527–1537

    Article  PubMed  CAS  Google Scholar 

  • Zelle RM, de Hulster E, van Winden WA (2008) Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl Environ Microbiol 74:2766–2777

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang F, Wang ZP, Chi Z, Raoufi Z, Abdollahi S, Chi ZM (2013) The changes in Tps1 activity, trehalose content and expression of TPS1 gene in the psychrotolerant yeast Guehomyces pullulans 17-1 grown at different temperatures. Extremophiles 17:241–249

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Zhou H, Du G, Liu L, Chen J (2010) Screening of a thiamine-auxotrophic yeast for α-ketoglutaric acid overproduction. Lett Appl Microbiol 51:264–271

Download references

Acknowledgments

This research was supported by Hi-Tech Research and Development Program of China (863) (grant no. 2012AA021205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Ming Chi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file

(DOC 533 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, GY., Lu, Y., Chi, Z. et al. Cloning and Characterization of a Pyruvate Carboxylase Gene from Penicillium rubens and Overexpression of the Genein the Yeast Yarrowia lipolytica for Enhanced Citric Acid Production. Mar Biotechnol 18, 1–14 (2016). https://doi.org/10.1007/s10126-015-9665-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-015-9665-5

Keywords

Navigation