Skip to main content
Log in

Phylogenetic Diversity and Antibacterial Activity of Culturable Fungi Derived from the Zoanthid Palythoa haddoni in the South China Sea

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Investigation on diversity of culturable fungi mainly focused on sponges and corals, yet little attention had been paid to the fungal communities associated with zoanthid corals. In this study, a total of 193 culturable fungal strains were isolated from the zoanthid Palythoa haddoni collected in the South China Sea, of which 49 independent isolates were identified using both morphological characteristics and internal transcribed spacer (ITS) sequence analyses. Thirty-five strains were selected for phylogenetic analysis based on fungal ITS sequences. The results indicated that 18 genera within eight taxonomic orders of two phyla (seven orders of the phylum Ascomycota and one order of the phylum Basidiomycota) together with one unidentified fungal strain have been achieved, and Cladosporium sp. represented the dominant culturable genus. Particularly, 14 genera were isolated from a zoanthid for the first time. The antibacterial activities of organic extracts of mycelia and fermentation broth of 49 identified fungi were evaluated, and 29 (59.2 %) of the isolates displayed broad-spectrum or selective antibacterial activity. More interestingly, more than 60 % of the active fungal strains showed strong activity against two aquatic pathogenic bacteria Nocardia brasiliensis and Vibrio parahaemolyticus, compared with other pathogenic bacteria, indicating that zoanthid-derived fungi may protect its host against pathogens. This is the first report of systematically phylogenetic diversity and extensively antibacterial activity of zoanthid-derived fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baker PW, Kennedy J, Dobson A, Marchesi JR (2009) Phylogenetic diversity and antimicrobial activities of fungi associated with Haliclona simulans isolated from Irish coastal waters. Mar Biotechnol 11:540–547

    Article  CAS  PubMed  Google Scholar 

  • Bhadury P, Mohammad BT, Wright C (2006) The current status of natural products from marine fungi and their potential as anti-infective agents. J Ind Microbiol Biotechnol 33:325–337

    Article  CAS  PubMed  Google Scholar 

  • Blunt JW, Copp BR, Keyzers RA, Munroa MHG, Prinsep MR (2014) Marine natural products. Nat Prod Rep 31:160–258

    Article  CAS  PubMed  Google Scholar 

  • Bugni TS, Ireland CM (2004) Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Nat Prod Rep 21:143–163

    Article  CAS  PubMed  Google Scholar 

  • Burnett WJ, Benzie JAH, Beardmore JA, Ryland JS (1997) Zoanthids (Anthozoa, Hexacorallia) from the Great Barrier Reef and Torres Strait, Australia: systematics, evolution and a key to species. Coral Reefs 16:55–68

    Article  Google Scholar 

  • Carté BK (1996) Biomedical potential of marine natural products. BioScience 46:271–286

    Article  Google Scholar 

  • Ciminiello P, Dell’Aversano C, Dello Iacovo E, Fattorusso E, Forino M, Grauso L, Tartaglione L, Florio C, Lorenzon P, De Bortoli M, Tubaro A, Poli M, Bignami G (2009) Stereostructure and biological activity of 42-hydroxy-palytoxin: a new palytoxin analogue from Hawaiian Palythoa subspecies. Chem Res Toxicol 22:1851–1859

    Article  CAS  PubMed  Google Scholar 

  • Ciminiello P, Dell’Aversano C, Dello Iacovo E, Forino M, Tartaglione L, Pelin M, Sosa S, Tubaro A, Chaloin O, Poli M, Bignami G (2014) Stereoisomers of 42-hydroxy palytoxin from Hawaiian Palythoa toxica and P. tuberculosa: stereostructure elucidation, detection, and biological activities. J Nat Prod 77:351–357

    Article  CAS  PubMed  Google Scholar 

  • Claudia M, Rafaella CB, Paula B, Michel P, Carlos S, Mariana RJ, Rebeca RL, Fabiana FG, Valeria MO, Roberto GB, Lara DS (2010) Microbial diversity associated with algae, ascidians and sponges from the north coast of Sao Paulo state, Brazil. Microbiol Res 165:465–482

  • Da Silva M, Passarini MRZ, Bonugli RC, Sette LD (2008) Cnidarian-drived filamentous fungi from Brazil: isolation, characterisation and RBBR decolourisation screening. Environ Technol 29:1331–1339

    Article  PubMed  Google Scholar 

  • Ding B, Yin Y, Zhang FL, Li ZY (2011) Recovery and phylogenetic diversity of culturable fungi associated with marine sponges Clathrina luteoculcitella and Holoxea sp. in the South China Sea. Mar Biotechnol 13:713–721

    Article  CAS  PubMed  Google Scholar 

  • Faulkner DJ (2002) Marine natural products. Nat Prod Rep 19:1–48

    CAS  PubMed  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primer with enhaneeds specificity for basidiomycetes application to the identification of mycorrizae-andrusts. Mol Ecol 2:113–118

  • Henríquez M, Vergara K, Norambuena J, Beiza A, Maza F, Ubilla P, Araya I, Chávez R, San-Martín A, Darias J, Darias MJ, Vaca I (2014) Diversity of cultivable fungi associated with Antarctic marine sponges and screening for their antimicrobial, antitumoral and antioxidant potential. World J Microbiol Biotechnol 30:65–76

    Article  PubMed  Google Scholar 

  • Herndl GL, Weinbauer MG (2003) Marine microbial food web structure and function. In: Wefer G, Lamy F, Mantoura F (eds) Marine science frontiers for Europe 265–277

  • Hyde KD (1996) Marine fungi. In: Grgurinovic C, Mallett K (eds) Fungi of Australia, Vol 1B 39–64

  • Hyde KD, Sarma VV, Jones EBG (2000) Morphology and taxonomy of higher marine fungi. In: Hyde KD, Pointing SB (eds) Marine mycology: a practical approach. Fungal Diversity Press, Hong Kong, pp 172–204

    Google Scholar 

  • Iwatsuki M, Tomoda H, Uchida R, Gouda H, Hirono S, Lariatins ŌS (2006) Antimycobacterial peptides produced by Rhodococcus sp. K01 − B0171, have a lasso structure. J Am Chem Soc 128:7486–7491

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi J, Tsuda M (2004) Bioactive products from Okinawan marine micro- and macroorganisms. Phytochem Rev 3:267–274

    Article  CAS  Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1979) Marine mycology—the higher fungi. Academic, New York, pp 1–690

    Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (1991) Illustrated key to the filamentous higher marine fungi. Bot Mar 34:1–61

    Article  Google Scholar 

  • Labas YA, Gurskaya NG, Yanushevich YG, Fradkov AF, Lukyanov KA, Lukyanov SA, Matz MV (2002) Diversity and evolution of the green fluorescent protein family. Proc Natl Acad Sci U S A 99:4256–4261

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li ZY, Liu Y (2006) Marine sponge Craniella austrialiensis associated bacterial diversity revelation based on 16S rDNA library and biologically active actinomycetes screening, phylogenetic analysis. Lett Appl Microbiol 43:410–416

    Article  CAS  PubMed  Google Scholar 

  • Moore RE, Bartolini G (1981) Structure of palytoxin. J Am Chem Soc 103:2491–2494

    Article  CAS  Google Scholar 

  • Moore RE, Scheuer PJ (1971) Palytoxin: a new marine toxin from a coelenterate. Science 172:495–498

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nithyanand P, Pandian SK (2009) Phylogenetic characterization of culturable bacterial diversity associated with the mucus and tissue of the coral Acropora digitifera from Gulf of Mannar. FEMS Microbiol Ecol 69:384–394

    Article  CAS  PubMed  Google Scholar 

  • Nithyanand P, Indhumathi T, Ravi AV, Pandian SK (2011) Culture independent characterization of bacteria associated with the mucus of the coral Acropora digitifera from the Gulf of Mannar. World J Microbiol Biotechnol 27:1399–1406

    Article  CAS  PubMed  Google Scholar 

  • Paul WB, Jonathan K, Alan WD, Julian RM (2009) Phylogenetic diversity and antimicrobial activities of fungi associated with Haliclona simulans isolated from Irish Coastal Waters. Mar Biotechnol 11:540–547

  • Priess K, Le Campion-Alsumard T, Golubic S, Gadel F, Thomassin BA (2000) Fungi in corals: black bands and density-banding of Porites lutea and P. lobata skeleton. Mar Biol 136:19–27

    Article  Google Scholar 

  • Reimer JD, Hirano S, Fujiwara Y, Sinniger F, Maruyama T (2007) Morphological and molecular characterization of Abyssoanthus nankaiensis, a new family, new genus and new species of deep-sea zoanthid (Anthozoa: Hexacorallia: Zoantharia) from a northwest Pacific methane cold seep. Invert Syst 21:255–262

    Article  CAS  Google Scholar 

  • Rohwer F, Breitbart M, Jara MJ, Azam F, Knowlton N (2001) Diversity of the bacteria associated with Caribbean coral Montastraea franksi. Coral Reefs 20:85–91

    Article  Google Scholar 

  • Rohwer F, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 243:1–10

    Article  Google Scholar 

  • Schupp P, Proksch P, Wray V (2002) Further new staurosporine derivatives from the ascidian Eudistoma toealensis and its predatory flatworm Pseudoceros sp. J Nat Prod 65:295–298

    Article  CAS  PubMed  Google Scholar 

  • Shao CL, Wu HX, Wang CY, Liu QA, Xu Y, Wei MY, Qian PY, Gu YC, Zheng CJ, She ZG, Lin YC (2011) Potent antifouling resorcylic acid lactones from the gorgonian-derived fungus Cochliobolus lunatus. J Nat Prod 74:629–633

    Article  CAS  PubMed  Google Scholar 

  • Shnit-Orland M, Kushmaro A (2009) Coral mucus-associated bacteria: a possible first line of defense. FEMS Microbiol Ecol 67:371–380

    Article  CAS  PubMed  Google Scholar 

  • Simmons TL, Andrianasolo E, McPhail K, Flatt P, Gerwick WH (2005) Marine natural products as anticancer drugs. Mol Cancer Ther 4:333–342

    CAS  PubMed  Google Scholar 

  • Strobel GA (2003) Endophytes as sources of bioactive products. Microbes Infect 5:535–544

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Zhang FL, He LM, Li ZY (2014) Pyrosequencing reveals diverse microbial community associated with the zoanthid Palythoa australiae from the South China Sea. Microbial Ecol 67:942–950

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson, TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X Windows interface: Flexible strategies for multible sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

  • Wang GY, Li QZ, Zhu P (2008) Phylogenetic diversity of culturable fungi associated with the Hawaiian sponges Suberites zeteki and Gelliodes fibrosa. Antonie Van Leeuwenhoek 93:163–174

    Article  PubMed  Google Scholar 

  • Wang YN, Shao CL, Zheng CJ, Chen YY, Wang CY (2011) Diversity and antibacterial activities of fungi derived from the gorgonian Echinogorgia rebekka from the South China Sea. Mar Drugs 9:1379–1390

    Article  PubMed Central  PubMed  Google Scholar 

  • White TJ, Bruns TD, Lee SB (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: A guide to methods and applications. Academic Press, New York, pp 315–322

  • Wicke C, Hüners M, Wray V, Nimtz M, Bilitewski U, Lang S (2000) Production and structure elucidation of glycoglycerolipids from a marine sponge-associated Microbacterium species. J Nat Prod 63:621–626

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Chen B, Lei XL, She ZG, Xiao BH (2011) Phylogenetic diversity analysis of cultured symbiotic fungi of Galaxea fascicularis L. Microbiol China 38:1193–1198

    CAS  Google Scholar 

  • Yang KL, Wei MY, Shao CL, Fu XM, Guo ZY, Xu RF, Zheng CJ, She ZG, Lin YC, Wang CY (2012) Antibacterial anthraquinone derivatives from a sea anemone-derived fungus Nigrospora sp. J Nat Prod 75:935–941

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Satake M, Fukuzawa S, Sugahara K, Niitsu A, Shirai T, Tachibana K (2012a) Two new indole alkaloids, 2-(3,3-dimethylprop-1-ene)-costaclavine and 2-(3,3-dimethylprop-1-ene)-epicostaclavine, from the marine-derived fungus Aspergillus fumigatus. J Nat Med 66:222–226

    Article  CAS  PubMed  Google Scholar 

  • Zhang XY, Sun YL, Bao J, He F, Xu XY, Qi SH (2012b) Phylogenetic survey and antimicrobial activity of culturable microorganisms associated with the South China Sea black coral Antipathes dichotoma. FEMS Microbiol Lett 336:122–130

    Article  CAS  PubMed  Google Scholar 

  • Zuluaga-Montero A, Toledo-Hernandez C, Rodriguez JA, Sabat AM, Bayman P (2010) Spatial variation in fungal communities isolated from healthy and diseased sea fans Gorgonia ventalina and seawater. Aquat Biol 8:151–160

    Article  Google Scholar 

Download references

Acknowledgments

C.-L. S. thanks Dr. A. M. Fenner (William H. Gerwick group, SIO, UCSD) for her proofreading of the manuscript. We acknowledge the funding from the Program of National Natural Science Foundation of China (Nos. 41322037; 41130858; 41176121; 81172977) and the Program for New Century Excellent Talents in University, Ministry of Education of China (No. NCET-11-0472). In support of much of the work in this manuscript, Prof. Zhi-Gang She (SYSU) kindly provided laboratory space and equipment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chang-Yun Wang or Chang-Lun Shao.

Additional information

Xiao-Yan Qin and Kai-Lin Yang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, XY., Yang, KL., Li, J. et al. Phylogenetic Diversity and Antibacterial Activity of Culturable Fungi Derived from the Zoanthid Palythoa haddoni in the South China Sea. Mar Biotechnol 17, 99–109 (2015). https://doi.org/10.1007/s10126-014-9598-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-014-9598-4

Keywords

Navigation