Skip to main content
Log in

Biomass and Lipid Production of Dinoflagellates and Raphidophytes in Indoor and Outdoor Photobioreactors

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The principal fatty acids from the lipid profiles of two autochthonous dinoflagellates (Alexandrium minutum and Karlodinium veneficum) and one raphidophyte (Heterosigma akashiwo) maintained in bubble column photobioreactors under outdoor culture conditions are described for the first time. The biomass production, lipid content and lipid productivity of these three species were determined and the results compared to those obtained when the strains were cultured indoors. Under the latter condition, the biotic values did not significantly differ among species, whereas under outdoor conditions, differences in both duplication time and fatty acids content were observed. Specifically, A. minutum had higher biomass productivity (0.35 g·L−1 day−1), lipid productivity (80.7 mg lipid·L−1 day−1) and lipid concentration (252 mg lipid·L−1) at harvest time (stationary phase) in outdoor conditions. In all three strains, the growth rate and physiological response to the light and temperature fluctuations of outdoor conditions greatly impacted the production parameters. Nonetheless, the species could be successfully grown in an outdoor photobioreactor and were of sufficient robustness to enable the establishment of long-term cultures yielding consistent biomass and lipid production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Balling RC, Randall S. Cerveny Jr, & Idso CD (2001) Does the urban CO2 dome of Phoenix, Arizona contribute to its heat island? Geophysical Research Letters. 28 (24) 4599-4601.

  • Benemann JR, Goebel RP, Weismann JC, Augenstein DC (1982) Microalgae as a source of liquid fuels. Final technical report to US Department of Energy. Washington, US Department of Energy

    Book  Google Scholar 

  • Benemann JR (2008) Opportunities & challenges in algae biofuels production. FAO. [Online] FAO.Available at http://www.fao.org/uploads/media/algae_positionpaper.pdf.

  • Borowitzka MA (1988) Fats, oils and hydrocarbons. In: Borowitzka MA, Borowitzka LJ (eds) Microalgal biotechnology. Cambridge University press, Cambridge, pp 257–287

    Google Scholar 

  • Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22(6):1490–1506

    PubMed  CAS  Google Scholar 

  • Chen CY, Yeh KL, Aisyah R, Lee D-J, Chang J-S (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102(1):71–81

    Article  PubMed  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:295–306

    Google Scholar 

  • Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS (2009) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol 100:833–838

    Article  PubMed  CAS  Google Scholar 

  • Escala M, Rosell-Melé A, Masqué P (2007) Rapid screening of glycerol dialkyl glycerol tetraheters in continental Eurasia samples using HPLC/APCI-ion trap mass spectrometry. Org Geochem 38:161–164

    Article  CAS  Google Scholar 

  • Fuentes-Grünewald C, Garcés E, Rossi S, Camp J (2009) Use of the dinoflagellate Karlodinium veneficum as a sustainable source of biodiesel production. J Ind Microbiol Biotechnol 36(9):1215–1224

    Article  PubMed  Google Scholar 

  • Fuentes-Grünewald C, Garcés E, Alacid E, Sampedro N, Rossi S, Camp J (2012) Improvement of lipid production in the marine strains Heterosigma akashiwo and Alexandrium minutum utilizing abiotic parameters. J Ind Microbiol Biotechnol 39(1):207–216

    Article  PubMed  Google Scholar 

  • Gallardo-Rodríguez JJ, Sanchéz-Mirón A, Garcia-Camacho F, Cerón-García MC, Belarbi EH, Molina-Grima E (2010) Culture of dinoflagellates in a fed-batch and continuous stirred-tank photobioreactors: growth, oxidative stress and toxin production. Process Biochem 45:660–666

    Article  Google Scholar 

  • Garcia-Camacho F, Gallardo-Rodríguez JJ, Sánchez-Mirón A, Cerón-García MC, Belarbi EH, Chisti Y, Molina-Grima E (2007) Biological significance of toxic marine dinoflagellates. Biotechnol Adv 25:176–194

    Article  Google Scholar 

  • Gómez-Brandón M, Lores M, Domínguez J (2008) Comparison of extraction and derivatization methods for fatty acid analysis in solid environmental matrixes. Anal Bioanal Chem 392(3):505–514

    Article  PubMed  Google Scholar 

  • Grewe C, Griehl C (2008) Time and media-dependent secondary carotenoid accumulation in Haematococcus pluviales. J Biotechnol 3:1232–1244

    Article  CAS  Google Scholar 

  • Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7(46):703–726

    Article  PubMed  CAS  Google Scholar 

  • Griffiths M, Harrison S (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21(5):493–507

    Article  CAS  Google Scholar 

  • Guillard RRL, Hargraves PE (1993) Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia 32:234–236

    Article  Google Scholar 

  • Guillard RRL (1995) Culture methods In: Hallegraeff GM, Anderson DM, Cembella AD (eds) Manual on harmful marine microalgae. IOC manuals and guides. UNESCO 33: 551

  • Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45(2):160–186

    Article  PubMed  CAS  Google Scholar 

  • Hu Q, Jarvis SM, Ghirardi E, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54(4):621–639

    Article  PubMed  CAS  Google Scholar 

  • Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzym Microbiol Technol 27:631–635

    Article  CAS  Google Scholar 

  • Kornilova O, Rosell-Melé A (2003) Application of microwave-assisted extraction to the analysis of biomarker climate proxies in marine sediments. Org Geochem 34:1517–1523

    Article  CAS  Google Scholar 

  • Kromkamp JC, Beardall J, Sukenik A, Kopeck J, Masojidek J, Bergeijk S, Gabai S, Shaham E, Yamshon A (2009) Short-term variations in photosynthetic parameters of Nannochloropsis cultures grown in two types of outdoor mass cultivation systems. Aquat Microb Ecol 56:309–322

    Article  Google Scholar 

  • Li Y, Han D, Hu G, Sommerfeld M, Hu Q (2010) Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol Bioeng 107(2):258–268

    Article  PubMed  CAS  Google Scholar 

  • Liang YN, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049

    Article  PubMed  CAS  Google Scholar 

  • Lourenço SO, Barbarinoi E, Mancini-Filh J, Schinke KP, & Aidar E (2002) Effects of different nitrogen sources on the growth and biochemical profile of 10 marine microalgae in batch culture: an evaluation for aquaculture. Phycologia 41(2):158–168

    Google Scholar 

  • Mansour PM, Volkman JK, Blackburn SI (2003) The effect of growth phase on the lipid class, fatty acid and sterol composition in the marine dinoflagellate, Gymnodinium sp. in batch culture. Phytochemistry 63:145–153

    Article  PubMed  CAS  Google Scholar 

  • Moheimani NR, Borowitzka MA (2006) The long-term culture of the coccolithophore Pleurochrysis carterae (Haptophyta) in outdoor raceway pond. J Appl Phycol 18:703–712

    Article  Google Scholar 

  • Molina Grima E, Belarbi EH, Fernández FGA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    Article  PubMed  CAS  Google Scholar 

  • Morweiser M, Kruse O, Hankamer B, Posten C (2010) Developments and perspectives of the photobioreactors for biofuel production. Appl Microbiol Biotechnol 87:1291–1301

    Article  PubMed  CAS  Google Scholar 

  • Norsker NH, Barbosa MJ, Vermuë MH, Wijffels RH (2011) Microalgal production—a close look at the economics. Biotechnol Adv 29(1):24–27

    Article  PubMed  CAS  Google Scholar 

  • Parker NS, Negri AP, Frampton DMF, Rodolfi L, Tredici MR, Blackburn SI (2002) Growth of the toxic dinoflagellate Alexandrium minutum (Dinophyceae) using high biomass culture systems. J Appl Phycol 14(5):313–324

    Article  CAS  Google Scholar 

  • Ramos MJ, Fernández CM, Casas A, Rodríguez L, Pérez A (2008) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol 100:261–268

    Article  PubMed  Google Scholar 

  • Rodolfi L, Chini-Zitella G, Bassi N, Padovani G, Bionde N, Bonini G, Tredici MR (2008) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:101–112

    Google Scholar 

  • Ruiz J, Antequera T, Andres AI, Petron MJ, Muriel E (2004) Improvement of a solid phase extraction method for analysis of lipid fractions in muscle foods. Anal Chim Acta 520(1–2):201–205

    Article  CAS  Google Scholar 

  • Sánchez JF, Fernández-Sevilla JM, Acién FG, Cerón MC, Pérez-Parra J, Molina-Grima E (2008) Biomass and lutein productivity of Scenedesmus almeriensis: influence of irradiance, dilution rate and temperature. Appl Microbiol Biotechnol 79:719–729

    Article  PubMed  Google Scholar 

  • Schmidtke A, Gaedke U, Weithoff G (2010) A mechanistic basis for underyielding in phytoplankton communities. Ecology 91(1):212–221

    Article  PubMed  Google Scholar 

  • Sevigné Itoiz E, Fuentes-Grünewald C, Gasol CM, Garcés E, Alacid E, Rossi S, Rieradevall J (2012) Energetic balance and environmental impact analysis of marine microalgal biomass production for biodiesel generation in a photobioreactor pilot plant. Biomass Bioenergy 39:324

    Article  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the U.S. Department of Energy’s aquatic species program: biodiesel from algae. National Renewable Energy Laboratory. NREL/TP-580-24190

  • Shimizu Y (2003) Microalgal metabolites. Curr Opin Microbiol 6:236–243

    Article  PubMed  CAS  Google Scholar 

  • Soroking C, Krauss RW (1958) The effects of light intensity on the growth rates of green algae. Plant Physiol 33(2):109–113

    Article  Google Scholar 

  • Tang H, O’Salley S, Simon KY (2010) Recent developments in microalgae for biodiesel production. Biofuels 1(4):631–643

    Article  CAS  Google Scholar 

  • Tang EPY (1995) The allometry of algal growth rates. J Plankton Res 17:1325–1335

    Article  Google Scholar 

  • Widjaja A, Chien CC, Ju YH (2009) Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem Eng 40:13–20

    Article  CAS  Google Scholar 

  • Yoo C, Jun SY, Lee JY, Ahn CY, Oh HM (2010) Selection of microalgae for lipid production under high level carbon dioxide. Bioresour Technol 101:71–74

    Article  Google Scholar 

  • Zhekisheva M, Boussiba S, Khozin-Goldberg I, Zarka A, Cohen Z (2002) Accumulation of oleic acid in Haematococcus pluvialis (Chlorophyceae) under nitrogen starvation or high light is correlated with that of astaxanthin esters. J Phycol 38:325–331

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the members of the L´Esfera Ambiental Laboratory, Universitat Autònoma de Barcelona, for their help with gas chromatography analyses. We thank S. Fraga for providing the clonal culture AMP4, L.del Río and X. Leal for their help with the experiments and the Experimental Aquarium Area (ZAE) of the ICM-CSIC for the use of their facilities. We gratefully acknowledge the National Scientific and Technical Research Council (CONICYT), Chile, for its support of the scholarship “Beca de Gestión Propia,” which finances the PhD studies of C. Fuentes-Grünewald. The work of E. Garcés and S. Rossi is supported by the Ramon y Cajal award from the Spanish Ministry of Science and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Fuentes-Grünewald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuentes-Grünewald, C., Garcés, E., Alacid, E. et al. Biomass and Lipid Production of Dinoflagellates and Raphidophytes in Indoor and Outdoor Photobioreactors. Mar Biotechnol 15, 37–47 (2013). https://doi.org/10.1007/s10126-012-9450-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-012-9450-7

Keywords

Navigation