Skip to main content
Log in

Aspartic Cathepsin D Endopeptidase Contributes to Extracellular Digestion in Clawed Lobsters Homarus americanus and Homarus gammarus

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Acid digestive proteinases were studied in the gastric fluids of two species of clawed lobster (Homarus americanus and Homarus gammarus). An active protein was identified in both species as aspartic proteinase by specific inhibition with pepstatin A. It was confirmed as cathepsin D by mass mapping, N-terminal, and full-length cDNA sequencing. Both lobster species transcribed two cathepsin D mRNAs: cathepsin D1 and cathepsin D2. Cathepsin D1 mRNA was detected only in the midgut gland, suggesting its function as a digestive enzyme. Cathepsin D2 mRNA was found in the midgut gland, gonads, and muscle. The deduced amino acid sequence of cathepsin D1 and cathepsin D2 possesses two catalytic DTG active-site motifs, the hallmark of aspartic proteinases. The putatively active cathepsin D1 has a molecular mass of 36.4 kDa and a calculated pI of 4.14 and possesses three potential glycosylation sites. The sequences showed highest similarities with cathepsin D from insects but also with another crustacean cathepsin D. Cathepsin D1 transcripts were quantified during a starvation period using real-time qPCR. In H. americanus, 15 days of starvation did not cause significant changes, but subsequent feeding caused a 2.5-fold increase. In H. gammarus, starvation caused a 40% reduction in cathepsin D1 mRNA, and no effect was observed with subsequent feeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Mohanna SY, Nott JA (1987) R-cells and the digestive cycle in Penaeus semisulcatus (Crustacea: Decapoda). Mar Biol 95:129–137

    Article  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zjang J, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  • Aoki H, Nazmul Ahsan M, Shugo W (2003) Molecular cloning and characterization of cathepsin B from the hepatopancreas of northern shrimp Pandalus borealis. Comp Biochem Physiol B Biochem Mol Biol 134:681–694

    Article  PubMed  CAS  Google Scholar 

  • Aoki H, Ahsan M, Watabe S (2004) Molecular and enzymatic properties of a cathepsin L-like proteinase with distinct substrate specificity from northern shrimp (Pandalus borealis). J Comp Physiol B-Biochem Syst Environ Physiol 174:59–69

    Article  CAS  Google Scholar 

  • Baker PL, Gibson R (1977) Observations on the feeding mechanism, structure of the gut, and digestive physiology of the European lobster Homarus gammarus. J Exp Mar Biol Ecol 26:297–324

    Article  Google Scholar 

  • Barrett AJ (1979) Cathepsin D: the lysosomal aspartic proteinase. Ciba Found Symp 79:37–50

    Google Scholar 

  • Barrett AJ (1998) Cathepsin D: the lysosomal aspartic proteinase. In: Barrett AJ, Rawlings ND, Woessner JF (eds) Handbook of proteolytic enzymes. Academic, San Diego, pp 37–50

    Google Scholar 

  • Barrett AJ, Rawlings ND, Woessner JF (1998) Proteolytic enzymes. In: Barrett AJ, Rawlings ND, Woessner JF (eds) Handbook of proteolytic enzymes. Academic, San Diego, pp 801–805

    Google Scholar 

  • Becker MM, Harrop SA, Dalton JP, Kalinna BH, McManus DP, Brindley PJ (1995) Cloning and characterization of the Schistosoma japonicum aspartic proteinase involved in hemoglobin degradation. J Biol Chem 270:24496–24501

    Article  CAS  PubMed  Google Scholar 

  • Boldbaatar D, Sikasunge CS, Battsetseg B, Xuan X, Fujisaki K (2006) Molecular cloning and functional characterization of an aspartic protease from the hard tick Haemaphysalis longicornis. Insect Biochem Mol Biol 36:25–36

    Article  CAS  PubMed  Google Scholar 

  • Brockerhoff H, Hoyle RJ, Hwang PC (1970) Digestive enzymes in the American lobster (Homarus americanus). J Fish Res Board Can 27:1357–1370

    CAS  Google Scholar 

  • Carginale V, Trinchella F, Capasso R, Parisia E (2004) Gene amplification and cold adaptation of pepsin in Antarctic fish: a possible strategy for food digestion at low temperature. Gene 336:195–205

    Article  CAS  PubMed  Google Scholar 

  • Coates L, Tuan H-F, Tomanicek S, Kovalevsky A, Mustyakimov M, Erskine P, Cooper J (2008) The catalytic mechanism of an aspartic proteinase explored with neutron and X-ray diffraction. J Am Chem Soc 130:7235–7237

    Article  CAS  PubMed  Google Scholar 

  • Cobb JS, Phillips BF (1980) The biology and management of lobsters. Academic, New York

    Google Scholar 

  • Cho WL, Raikhel AS (1992) Cloning of cDNA for mosquito lysosomal aspartic protease. J Biol Chem 267:21823–21829

    CAS  PubMed  Google Scholar 

  • Crossin G, Al-Ayoub SA, Jury SH, Huntting H, Watson WH III (1998) Behavioral thermoregulation in the American lobster Homarus americanus. J Exp Biol 201:365–374

    PubMed  Google Scholar 

  • Davies DR (1990) The structure and function of the aspartic proteinases. Annu Rev Biophys Biophys Chem 19:189–215

    Article  CAS  PubMed  Google Scholar 

  • Debashish G, Malay S, Barindra S, Joydeep M (2005) Marine enzymes. Marine Biotechnology I 96:189–218

    Article  CAS  Google Scholar 

  • Delcroix M, Sajid M, Caffrey C, Lim K, Jan D, Hsieh I, Bahgat M, Dissous C, McKerrow J (2006) A multienzyme network functions in intestinal protein digestion by a platyhelminth parasite. J Biol Chem 281:39316–39329

    Article  CAS  PubMed  Google Scholar 

  • Factor JR, Naar M (1990) The digestive system of the lobster, Homarus americanus: II. Terminal hepatic arterioles of the digestive gland. J Morphol 206:283–291

    Article  Google Scholar 

  • Faust PL, Kornfeld S, Chirgwin JM (1985) Cloning and sequence analysis of cDNA for human cathepsin D. Proc Natl Acad Sci USA 82:4910–4914

    Article  CAS  PubMed  Google Scholar 

  • Feller G, Gerday C (1997) Review, psychrophilic enzymes: molecular basis of cold adaptation. Cell Mol Life Sci 53:830–841

    Article  CAS  PubMed  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208

    Article  CAS  PubMed  Google Scholar 

  • Fusek M, Větvička V (2005) Dual role of cathepsin D: ligand and protease. Biomed Papers 149:43–50

    CAS  Google Scholar 

  • Galgani F, Benyamin Y, van Wormhoudt A (1985) Purification, properties and immunoassay of trypsin from Penaeus japonicus. Comp Biochem Physiol B 81:447–452

    Article  Google Scholar 

  • García-Carreño FL, Dimes LE, Haard N (1993) Substrate-gel electrophoresis for composition and molecular weight of proteinases of proteinaceous proteinase inhibitor. Anal Biochem 214:65–69

    Article  PubMed  Google Scholar 

  • Gerday C, Aittaleb M, Bentahir M, Chessa J-P, Claverie P, Collins T, D'Amico S, Dumont J, Garsoux G, Georlette D, Hoyoux A, Lonhienne T, Meuwis MA, Feller G (2000) Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol 18:103–107

    Article  CAS  PubMed  Google Scholar 

  • Gierasch LM (1989) Signal sequences. Biochemistry 28:923–930

    Article  CAS  PubMed  Google Scholar 

  • Glass HJ, Stark JR (1994) Protein digestion in the European lobster, Homarus gammarus (L.). Comp Biochem Physiol 108B:225–235

    CAS  Google Scholar 

  • Gudmundsdóttir Á, Pálsdóttir HM (2005) Atlantic cod trypsins: from basic research to practical applications. Mar Biotechnol 7:77–88

    Article  PubMed  CAS  Google Scholar 

  • Gui Z, Lee K, Kim B, Choi Y, Wei Y, Choo Y, Kang P, Yoon H, Kim I, Je Y, Seo S, Lee S, Guo X, Sohn H, Jin B (2006) Functional role of aspartic proteinase cathepsin D in insect metamorphosis. BMC Dev Biol 6:49

    Article  PubMed  CAS  Google Scholar 

  • Haard NF (1991) A review of proteolytic enzymes from marine organisms and their application in the food industry. J Aquat Food Prod Technol 1:17–35

    Article  Google Scholar 

  • Hamilton KA, Nisbet AJ, Lehane MJ, Taylor MA, Billingsley PF (2003) A physiological and biochemical model for digestion in the ectoparasitic mite, Psoroptes ovis (Acari: Psoroptidae). Int J Parasitol 33:773–785

    Article  CAS  PubMed  Google Scholar 

  • Harrop SA, Prociv P, Brindley PJ (1996) Acasp, a gene encoding a cathepsin D-like aspartic protease from the hookworm Ancylostoma caninum. Biochem Biophys Res Commun 227:294–302

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Cortés P, Whitaker JR, García-Carreño FL (1997) Purification and characterization of chymotrypsin from Penaeus vannamei (Crustacea:Decapoda). J Food Biochem 21:497–514

    Article  Google Scholar 

  • Hernández-Cortés P, Cerenius L, García-Carreño FL, Soderhal K (1999) Trypsin from Pacifastacus leniusculus hepatopancreas: purification and cDNA cloning of the synthesized zymogen. Biol Chem 380:499–501

    Article  PubMed  Google Scholar 

  • Hoyle RJ (1973) Digestive enzyme secretion after dietary in the American lobster (Homarus americanus). J Fish Res Board Can 30:1647–1653

    Google Scholar 

  • Hu KJ (2003) Molecular cloning and characterization of the cathepsin L gene from the marine shrimp Metapenaeus ensis. The University of Hong Kong, China

    Google Scholar 

  • Hu KJ, Leung PSC (2007) Food digestion by cathepsin L and digestion-related rapid cell differentiation in shrimp hepatopancreas. Comp Biochem Physiol 146B:69–80

    CAS  Google Scholar 

  • Kageyama T (2002) Pepsinogens, progastricsins, and prochymosins: structure, function, evolution, and development. Cell Mol Life Sci 59:288–306

    Article  CAS  PubMed  Google Scholar 

  • Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13:345–351

    Article  CAS  PubMed  Google Scholar 

  • Laycock MV, Hirama T, Hasnain S, Watson D, Storer A (1989) Purification and characterization of a digestive cysteine proteinase from the American lobster (Homarus americanus). Biochem J 263:439–444

    CAS  PubMed  Google Scholar 

  • Laycock MV, MacKay RM, Di Fruscio M, Gallant JW (1991) Molecular cloning of three cDNAs that encode cysteine proteinases in the digestive gland of the American lobster (Homarus americanus). FEBS Lett 292:115–120

    Article  CAS  PubMed  Google Scholar 

  • Le Boulay C, Sellos D, Van Wormhoudt A (1998) Cathepsin L gene organization in crustaceans. Gene 218:77–84

    Article  PubMed  Google Scholar 

  • Lehnert SH, Johnson SE (2002) Expression of hemocyanin and digestive enzyme messenger RNAs in the hepatopancreas of the black tiger shrimp Penaeus monodon. Comp Biochem Physiol 133B:163–171

    CAS  Google Scholar 

  • Leiros HK, Willassen NP, Smalås AO (2000) Structural comparison of psychrophilic and mesophilic trypsins. Elucidating the molecular basis of cold-adaptation. Eur J Biochem 267:1039–1049

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the \( {{2}^{ - \Delta \Delta {\rm{CT}}}} \) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mikami S, Takashima F (2000) Functional morphology of the digestive system. In: Phillips BF, Kittaka J (eds) Spiny lobsters: fisheries and culture. Blackwell, London, pp 601–610

    Chapter  Google Scholar 

  • Minarowska A, Gacko M, Karwowska A, Minarowski Ł (2008) Human cathepsin D. Folia Histochem Cytobiol 46:23–38

    Article  CAS  PubMed  Google Scholar 

  • Muhlia-Almazán A, García-Carreño FL (2003) Digestion physiology and proteolytic enzymes of crustacean species of the Mexican Pacific Ocean. In: Hendrickx ME (ed) Contributions to the study of east Pacific crustaceans 2. UNAM, Mexico City, pp 77–91

    Google Scholar 

  • Mukhin V, Smirnova E, Novikov V (2007) Peculiarities of digestive function of proteinases in invertebrates—inhabitants of cold seas. J Evol Biochem Physiol 43:476–482

    Article  CAS  Google Scholar 

  • Nakao Y, Kozutsumi Y, Kawasaki T, Yamashina I, Van Halbeek H, Vliegenthart JFG (1984) Oligosaccharides on cathepsin D from porcine spleen. Arch Biochem Biophys 228:43–54

    Article  Google Scholar 

  • Navarrete del Toro MA, García-Carreño FL, Díaz LM, Celis-Guerrero L, Saborowski R (2006) Aspartic proteinases in the digestive tract of marine decapod crustaceans. J Exp Zool 305A:645–654

    Article  CAS  Google Scholar 

  • Neurath H (1984) Evolution of proteolytic enzymes. Science 224:350–357

    Article  CAS  PubMed  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

    Article  CAS  PubMed  Google Scholar 

  • Omondi J, Stark JR (2001) Studies on digestive proteases from midgut glands of a shrimp, Penaeus indicus, and a lobster, Nephrops norvegicus. Appl Biochem Biotechnol 90:137–153

    Article  CAS  PubMed  Google Scholar 

  • Rost B, Yachdav G, Liu J (2004) The PredictProtein server. Nucleic Acids Res 32:321–326

    Article  CAS  Google Scholar 

  • Salem M, Silverstein J, Rexroad CE, Yao J (2007) Effect of starvation on global gene expression and proteolysis in rainbow trout (Oncorhynchus mykiss). Genomics 8:328

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Paz JA, García-Carreño FL, Muhlia-Almazán A, Hernández-Saavedra N, Yepiz-Plascencia G (2003) Differential expression of trypsin mRNA in the white shrimp (Penaeus vannamei) midgut gland under starvation conditions. J Exp Mar Biol Ecol 292:1–17

    Article  CAS  Google Scholar 

  • Sánchez-Paz A, García-Carreño F, Muhlia-Almazán A, Peregrino-Uriarte AB, Hernández-López J, Yepiz-Plascencia G (2006) Usage of energy reserves in crustaceans during starvation: status and future directions. Insect Biochem Mol Biol 36:241–249

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Paz A, García-Carreño FL, Hernández-López J, Muhlia-Almazán A, Yepiz-Plascencia G (2007) Effect of short-term starvation on hepatopancreas and plasma energy reserves of the Pacific white shrimp (Litopenaeus vannamei). J Exp Mar Biol Ecol 340:184–193

    Article  CAS  Google Scholar 

  • Schäfer T, Kirk O, Borchert TV, Fuglsang CC, Pedersen S, Salmon S, Olsen HS, Deinhammer R, Lund H (2005) Enzymes for technical applications. In: Steinbüchel A, Rhee SK (eds) Polysaccharides and polyamides in the food industry: properties, production, and patents. Wiley-VCH, Weinheim, pp 557–618

    Google Scholar 

  • Shahidi F, Janak Kamil YVA (2001) Enzymes from fish and aquatic invertebrates and their application in the food industry. Trends Food Sci Technol 12:435–464

    Article  Google Scholar 

  • Shewale JG, Tang J (1984) Amino acid sequence of porcine spleen cathepsin D. Proc Natl Acad Sci USA 81:3703–3707

    Article  CAS  PubMed  Google Scholar 

  • Smalås AO, Heimstad ES, Hordvik A, Willassen NP, Male R (1994) Cold adaption of enzymes: structural comparison between salmon and bovine trypsins. Protein Struct Funct Genet 20:149–166

    Article  Google Scholar 

  • Sojka D, Franta Z, Horn M, Hajdusek O, Caffrey C, Mares M, Kopacek P (2008) Profiling of proteolytic enzymes in the gut of the tick Ixodes ricinus reveals an evolutionarily conserved network of aspartic and cysteine peptidases. Parasit Vectors 1:7

    PubMed  Google Scholar 

  • Takahashi T, Schmidt PG, Tang J (1983) Oligosaccharide units of lysosomal cathepsin D from porcine spleen. Amino acid sequence and carbohydrate structure of the glycopeptides. J Biol Chem 258:2819–2830

    CAS  PubMed  Google Scholar 

  • Tang J, Wong RNS (1987) Evolution in the structure and function of aspartic proteases. J Cell Biochem 33:53–63

    Article  CAS  PubMed  Google Scholar 

  • Terova G, Rimoldi S, Larghi S, Bernardini G, Gornati R, Saroglia M (2007) Regulation of progastrics in mRNA levels in sea bass (Dicentrarchus labrax) in response to fluctuations in food availability. Biochem Biophys Res Commun 363:591–596

    Article  CAS  PubMed  Google Scholar 

  • Teschke M, Saborowski R (2005) Cysteine proteinases substitute for serine proteinases in the midgut glands of Crangon crangon and Crangon allmani (Decapoda: Caridea). J Exp Mar Biol Ecol 315:213–299

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acid Res 22:4673–4680

    Article  CAS  PubMed  Google Scholar 

  • Titani K, Torff HJ, Hormel S, Kumar S, Walsh KA, Rodl J, Neurath H, Zwilling R (1987) Amino acid sequence of a unique protease from the crayfish Astacus fluviatilis. Biochemistry 26:222–226

    Article  CAS  PubMed  Google Scholar 

  • Towatari T, Miyamura T, Kondo A, Kato I, Inoue M, Yano M, Kido H (1998) The structures of asparagine-linked oligosaccharides of rat liver cathepsin L reflect the substrate specificity of lysosomal α-mannosidase. Eur J Biochem 256:163–169

    Article  CAS  PubMed  Google Scholar 

  • von Heijne G (1990) The signal peptide. J Membr Biol 115:195–201

    Article  Google Scholar 

  • Yonezawa S, Takahashi T, Wang X, Wong R, Hartsuck J, Tang J (1988) Structures at the proteolytic processing region of cathepsin D. J Biol Chem 263:16604–16611

    Google Scholar 

  • Zar JH (1984) Biostatistical analysis. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Zwilling R, Stöcker W (1997) The astacins: structure and function of a new protein family. Dr Kovac Verlag, Hamburg

    Google Scholar 

Download references

Acknowledgments

We thank M. Navarrete del Toro at CIBNOR for sharing knowledge and invaluable advice on the proteinase experiments and I. Fogel at CIBNOR for valuable comments on this manuscript. L.C.R.A. received a doctoral fellowship from CONACYT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando García-Carreño.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rojo, L., Muhlia-Almazan, A., Saborowski, R. et al. Aspartic Cathepsin D Endopeptidase Contributes to Extracellular Digestion in Clawed Lobsters Homarus americanus and Homarus gammarus . Mar Biotechnol 12, 696–707 (2010). https://doi.org/10.1007/s10126-010-9257-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-010-9257-3

Keywords

Navigation