Skip to main content

Advertisement

Log in

Underwater Adhesive of Marine Organisms as the Vital Link Between Biological Science and Material Science

  • Invited Review
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Marine sessile organisms naturally attach themselves to diverse materials in water by a technique that has so far remained unreproducible. Recent studies on the holdfast of marine sessile organisms have revealed natural concepts that are currently beyond our understanding with respect to the molecular design and macroscopic range. The combination of valuable and practical natural design of biotic adhesives as biomolecular materials, together with continuing efforts towards mimetic design, hold the promise of revolution for future materials. This review focuses on recent advances in the study of barnacle underwater cement, a protein complex whose constituents and the properties of individual components are being uncovered. A comparison is made with the model systems used by the mussel and tubeworm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson KE, Waite JH (1998) A major protein precursor of xebra mussel (Dreissena polymorpha) byssus: deduced sequence and significance. Biol Bull 194:150–160

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Ferrigno R, Yang J, Whitesides GM (2002) Redox properties of cytochrome c adsorbed on self-assembled monolayers: a probe for protein conformation and orientation. Langmuir 18:7009–7015

    Article  CAS  Google Scholar 

  • Dalsin JL, Bh H, Lee BP, Messersmith PB (2003) Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. J Am Chem Soc 125:4253–4258

    Article  PubMed  CAS  Google Scholar 

  • Das R, Kiley PJ, Segal M, Norville J, Yu AA (2004) Integration of photosynthetic protein molecular complexes in solid-state electronic devices. Nano Lett 4:1079–1083

    Article  CAS  Google Scholar 

  • Deming TJ (1999) Mussel byssus and biomolecular materials. Curr Opin Chem Biol 3:100–105

    Article  PubMed  CAS  Google Scholar 

  • Flammang P, Santos R, Haesaerts D (2005) Echinoderm adhesive secretions: from experimental characterization to biotechnological applications. In: Matranga V (ed) Progress in molecular and subcellular biology subseries marine molecular biotechnology. Springer-Verlag, Berlin, pp 201–220

    Google Scholar 

  • Dobson CM (1999) Protein misfolding, evolution and disease. Trends Biochem Sci 24:329–332

    Article  PubMed  CAS  Google Scholar 

  • Fletcher GL, Hew CL, Davies PL (2001) Antifreeze proteins of teleost fishes. Annu Rev Physiol 63:359–390

    Article  PubMed  CAS  Google Scholar 

  • Floriolli R, von Langen J, Waite JH (2000) Marine surfaces and the expression of specific byssal adhesive protein variants in Mytilus. Mar Biotech 2:352–363

    CAS  Google Scholar 

  • Humphrey AJ, Finlay JA, Pettitt ME, Stanley MS, Callow JA (2005) Effect of Ellman’s reagent and dithiothreitol on the curing of the spore adhesive glycoprotein of the green alga Ulva. J Adhesion 81:791–803

    Article  CAS  Google Scholar 

  • Hwang DS, Gim Y, Cha HJ (2005) Expression of functional recombinant mussel adhesive protein type 3A in Escherichia coli. Biotechnol Prog 21:965–970

    Article  PubMed  CAS  Google Scholar 

  • Hwang DS, Gim Y, Yoo HJ, Cha HJ (2007) Practical recombinant hybrid mussel bioadhesive fp-151. Biomaterials 28:3560–3568

    Article  PubMed  CAS  Google Scholar 

  • Hyun J, Lee WK, Nath N, Chilkoti A, Zauscher S (2004) Capture and release of proteins on the nanoscale by stimuli-responsive elastin-like polypeptide “switches.” J Am Chem Soc 126:7330–7335

    Article  PubMed  CAS  Google Scholar 

  • Iijima M, Hashimoto T, Matsuda Y, Nagai T, Yamano Y, Ichi T, Osaki T, Kawabata S (2005) Comprehensive sequence analysis of horseshoe crab cuticular proteins and their involvement in transglutaminase-dependent cross-linking. FEBS J 272:4774–4786

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Takeuchi Y, Miki D, Odo S (1995) Mussel adhesive plaque protein gene is a novel member of epidermal growth factor-like gene family. J Biol Chem 270:6698–6701

    Article  PubMed  CAS  Google Scholar 

  • Jia Z, Davies PL (2002) Antifreeze proteins: an unusual receptor-ligand interaction. Trends Biochem Sci 27:101–106

    Article  PubMed  CAS  Google Scholar 

  • Kallio JM, Linder MB, Rouvinen J (2007) Crystal structures of hydrophobin HFBII in the presence of detergent implicate the formation of fibrils and monolayer films. J Biol Chem 282:28733–28739

    Article  PubMed  CAS  Google Scholar 

  • Kamino K (2001) Novel barnacle underwater adhesive protein is a charged amino acid-rich protein constituted by a Cys-rich repetitive sequence. Biochem J 356:503–507

    Article  PubMed  CAS  Google Scholar 

  • Kamino K (2006) Barnacle underwater attachment. In: Smith AM, Callow JA (eds) Biological adhesives. Springer-Verlag, Berlin, pp 145–166

    Chapter  Google Scholar 

  • Kamino K, Odo S, Maruyama T (1996) Cement proteins of the acorn barnacle, Megabalanus rosa. Biol Bull 190:403–409

    Article  PubMed  CAS  Google Scholar 

  • Kamino K, Inoue K, Maruyama T, Takamatsu N, Harayama S, Shizuri Y (2000) Barnacle cement proteins. Importance of disulfide bonds in their insolubility. J Biol Chem 275:27360–27365

    PubMed  CAS  Google Scholar 

  • Lacombe D (1970) A comparative study of the cement glands in some balanid barnacles (cirripedia, balanidae). Biol Bull 139:164–179

    Article  Google Scholar 

  • Lee H, Scherer NF, Messersmith PB (2006) Single-molecule mechanics of mussel adhesion. Proc Natl Acad Sci USA 103:12999–13003

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Lee BP, Messersmith PB (2007) A reversible wet/dry adhesive inspired by mussels and geckos. Nature 448:338–341

    Article  PubMed  CAS  Google Scholar 

  • Lin Q, Gourdon D, Sun C, Holten-Andersen TH, Waite JH, Israelachvili JN (2007) Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3. Proc Natl Acad Sci USA 104:3782–3786

    Article  PubMed  CAS  Google Scholar 

  • Loizou E, Weisser JT, Dundigalla A, Porcar L, Schmidt G, Wilker JJ (2006) Structural effects of crosslinking a biopolymer hydrogel derived from marine mussel adhesive protein. Macromol Biosci 6:711–718

    Article  PubMed  CAS  Google Scholar 

  • Mandard N, Sy D, Maufrais C, Bonmatin JM, Bulet P, Hetru C, Vovelle F (1999) Androctonin, a novel antimicrobial peptide from scorpion Androctonus austrails: solution structure and molecular dynamics in the presence of a lipid monolayer. J Biomol Struct Dyn 17:367–380

    PubMed  CAS  Google Scholar 

  • McDowell LM, Burzio LA, Waite JH, Schaefer J (1999) Rotational echo double resonance detection of cross-links formed in mussel byssus under high-flow stress. J Biol Chem 274:20293–20295

    Article  PubMed  CAS  Google Scholar 

  • Mori Y, Urushida Y, Nakano M, Uchiyama S, Kamino K (2007) Calcite-specific coupling protein in barnacle underwater cement. FEBS J 274:6436–6446

    PubMed  CAS  Google Scholar 

  • Nagai A, Yamamoto H (1989) Insolubilizing studies of water-soluble poly(Lys Tyr) by tyrosinase. Bull Chem Soc Jpn 62:2410–2412

    Article  CAS  Google Scholar 

  • Nakano M, Shen J-R, Kamino K (2007) Self-assembling peptide inspired by a barnacle underwater adhesive protein. Biomacromol 8:1830–1835

    Article  CAS  Google Scholar 

  • Naldrett MJ (1993) The importance of sulphur cross-links and hydrophobic interactions in the polymerization of barnacle cement. J Mar Bio Assoc UK 73:689–702

    Article  CAS  Google Scholar 

  • Ninan L, Monahan J, Stroshine RL, Wilker JJ, Shi R (2004) Adhesive strength of marine mussel extracts on porcine skin. Biomaterials 24:4091-4099

    Article  CAS  Google Scholar 

  • Okano K, Shimizu K, Satuito C, Fusetani N (1996) Visualization of cement exocytosis in the cypris cement gland of the barnacle Megabalanus rosa. J Exp Boil 199:2131–2137

    Google Scholar 

  • Ohkawa K, Nishida A, Yamamoto H, Waite JH (2004) A glycosylated byssal precursor protein from the green mussel Perna viridis with modified DOPA side-chains. Biofouling 20:101–115

    Article  PubMed  CAS  Google Scholar 

  • Ooka AA, Garrell RL (2000) Surface-enhanced Raman spectroscopy of DOPA-containing peptides related to adhesive protein of marine mussel, Mytulus edulis. Biopolymers 57:92–102

    Article  CAS  Google Scholar 

  • Papov VV, Diamond TV, Biemann K, Waite JH (1995) Hydroxyarginine-containing polyphenolic proteins in the adhesive plaques of the marine mussel Mytilus edulis. J Biol Chem 270:20183–20192

    Article  PubMed  CAS  Google Scholar 

  • Sagert J, Sun C, Waite JH (2006) Chemical subtleties of mussel and polychaete holdfasts. In: Smith AM, Callow JA (eds) Biological adhesives. Springer-Verlag, Berlin, pp 125–140

    Chapter  Google Scholar 

  • Saroyan JR, Lindner E, Dooley CA (1970) Repair and reattachment in the balanidae as related to their cementing mechanism. Biol Bull 139:333–350

    Article  Google Scholar 

  • Sever MJ, Weisser JT, Monahan J, Srinivasan S, Wilker JJ (2004) Metal-mediated cross-linking in the generation of a marine-mussel adhesive. Angew Chem Int Ed 43:448–450

    Article  CAS  Google Scholar 

  • Stevens MJ, Steren RE, Hlady V, Stewart RJ (2007) Multiscale structure of the underwater adhesive of Phragmatopoma californica: a nanostructured latex with a steep microporosity gradient. Langmuir 23:5045–5049

    Article  PubMed  CAS  Google Scholar 

  • Stewart RJ, Weaver JC, Morse DE, Waite JH (2004) The tube cement of Phragmatopoma californica: a sold foam. J Exp Biol 207:4727–4734

    Article  PubMed  CAS  Google Scholar 

  • Suzuki R, Mori Y, Kamino K, Yamazaki T (2005) NMR assignment of the barnacle cement protein mrcp-20k. J Biomol NMR 32:257

    Article  PubMed  CAS  Google Scholar 

  • Taylor SW, Waite JH (1994) trans-2,3-cis-3,4-Dihydroxyproline, a new naturally occurring amino acid, is the sixth residue in the tandemly repeated consensus decapeptides of an adhesive protein from Mytilus edulis. J Am Chem Soc 116:10803–10804

    Article  CAS  Google Scholar 

  • Urushida Y, Nakano M, Matsuda S, Inoue N, Kanai S, Kitamura N, Nishino T, Kamino K (2007) Identification and functional characterization of a novel barnacle cement protein cp-19k. FEBS J 274:4336–4346

    Article  PubMed  CAS  Google Scholar 

  • Von Byern J, Klepal W (2006) Adhesive mechanisms in cephalopods: a review. Biofouling 22:329–338

    Article  PubMed  Google Scholar 

  • Waite JH (1986) Mussel glue from Mytilus californianus Conrad: a comparative study. J Comp Physiol B 156:491–496

    Article  PubMed  CAS  Google Scholar 

  • Waite JH (1987) Nature’s underwater adhesive specialist. Int J Adhes 7:9–14

    Article  CAS  Google Scholar 

  • Waite JH, Tanzer ML (1981) Polyphenolic substance of Mytilus edulis: novel adhesive containing L-Dopa and hydroxyproline. Science 212:352–354

    Article  Google Scholar 

  • Waite JH, Qin XX (2001) Polyphosphoprotein from the adhesive pads of Mytilus edulis. Biochemistry 40:2887–2893

    Article  PubMed  CAS  Google Scholar 

  • Waite JH, Vaccaaro E, Sun C, Lucas JM (2002) Elastomeric gradients: a hedge against stress concentration in marine holdfast? Phil Trans R Soc Lond B 357:143–153

    Article  CAS  Google Scholar 

  • Waite JH, Lichtenegger HC, Stucky GD, Hansma P (2004) Exploring molecular and mechanical gradients in structural bioscaffolds. Biochemistry 43:7653–7662

    Article  PubMed  CAS  Google Scholar 

  • Waite JH, Anderson NH, Jewhurst S, Sun C (2005) Mussel adhesion: finding the tricks worth mimicking. J Adhes 81:297–317

    Article  CAS  Google Scholar 

  • Walker G (1970) The histology, histochemistry and ultrastructure of the cement apparatus of three adult sessile barnacles, Elminius modestus, Balanus balanoides and Balanus haemri. Mar Biol 7:239–248

    Article  Google Scholar 

  • Weigemann M, Watermann B (2003) Peculiarities of barnacle adhesive cured on non-stick surfaces. J Adhes Sci Technol 17:1957–1977

    Article  Google Scholar 

  • Werneke SW, Swann C, Farquharson LA, Hamilton KS, Smith AM (2007) The role of metals in molluscan adhesive gels. J Exp Biol 210:2137–2145

    Article  PubMed  CAS  Google Scholar 

  • Whitesides GM, Boncheva M (2002) Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc Natl Acad Sci USA 99:4769–4774

    Article  PubMed  CAS  Google Scholar 

  • Williams T, Marumo K, Waite JH, Henkens RW (1989) Mussel glue protein has an open conformation. Arch Biochem Biophys 269:415–422

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto H, Saitoh A, Ohkawa K (2003) Synthesis of sequential polypeptides containing O-phospho-L-serine. Macromol Biosci 3:354–363

    Article  CAS  Google Scholar 

  • Yu M, Deming TJ (1998) Synthetic polypeptide mimics of marine adhesives. Macromol 31:4739–4745

    Article  CAS  Google Scholar 

  • Yu M, Hwang J, Deming TJ (1999) Role of L-3,4-dihydroxyphenylalanine in mussel adhesive proteins. J Am Chem Soc 121:5825–5826

    Article  CAS  Google Scholar 

  • Zhang W, Laursen RA (1998) Structure-function relationships in a type I antifreeze polypeptide. The role of threonine methyl and hydroxyl groups in antifreeze activity. J Biol Chem 273:34806–34812

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Waite JH (2006) Proteins in load-bearing junctions: the histidine-rich metal-binding protein of mussel byssus. Biochemistry 45:14223–14231

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Waite JH (2006) Linking adhesive and structural proteins in the attachment plaque of Mytilus californianus. J Biol Chem 281:26150–26158

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Zhang S (2004) Fabrication of molecular materials using peptide construction motifs. Trends Biotech 22:470–476

    Article  CAS  Google Scholar 

  • Zhao H, Robertson NB, Jewhurst SA, Waite JH (2006) Probing the adhesive footprints of Mytilus californianus byssus. J Biol Chem 281:11090–11096

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The author thank Dr. T. Innes and Prof. J-R. Shen for their critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kei Kamino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamino, K. Underwater Adhesive of Marine Organisms as the Vital Link Between Biological Science and Material Science. Mar Biotechnol 10, 111–121 (2008). https://doi.org/10.1007/s10126-007-9076-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-007-9076-3

Keywords

Navigation