Skip to main content
Log in

Probing the roles of diethylaluminum chloride in propylene polymerization with MgCl2-supported ziegler-natta catalysts

  • Papers
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In this article, the effect of diethylaluminum chloride (DEAC) in propylene polymerization with MgCl2-supported Ziegler-Natta catalyst was studied. Addition of DEAC in the catalyst system caused evident change in catalytic activity and polymer chain structure. The activity decrease in raising DEAC/Ti molar ratio from 0 to 2 is a result of depressed production of isotactic polypropylene chains. The number of active centers in fractions of each polymer sample was determined by quenching the polymerization with 2-thiophenecarbonyl chloride and fractionating the polymer into isotactic, mediumisotactic and atactic fractions. The number of active centers in isotactic fraction ([Ci*]/[Ti]) was lowered by increasing DEAC/Ti molar ratio to 2, but further increasing the DEAC/Ti molar ratio to 20 caused marked increase of [Ci*]/[Ti]. The number of active centers that produce atactic and medium-isotactic PP chains was less influenced by DEAC in the range of DEAC/Ti = 0–10, but increased when the DEAC/Ti molar ratio was further raised to 20. The propagation rate constant of Ci* (k pi) was evidently increased when DEAC/Ti molar ratio was raised from 0 to 5, but further increase in DEAC/Ti ratio caused gradual decrease in k pi. The complicated effect of DEAC on the polymerization kinetics, catalysis behaviors and polymer structure can be reasonably explained by adsorption of DEAC on the central metal of the active centers or on Mg atoms adjacent to the central metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Natta, G. and Mazzanti, G., Tetrahedron, 1960, 8: 86

    Article  CAS  Google Scholar 

  2. Sacchi, M.C., Forlini, F., Tritto, I. and Locatelli, P., Macromol. Chem. Phys., 1995, 196: 2881

    Article  CAS  Google Scholar 

  3. Boero, M., Parrinello, M. and Terakura, K., J. Am. Chem. Soc., 2000, 122: 501

    Article  CAS  Google Scholar 

  4. Chadwick, J.C., Morini, G., Balbontin, G., Camurati, I., Heere, J.J.R., Mingozzi, I. and Testoni, F., Macromol. Chem. Phys., 2001, 202: 1995

    Article  CAS  Google Scholar 

  5. Bukatov, G.D. and Zakharov, V.A., Macromol. Chem. Phys., 2001, 202: 2003

    Article  CAS  Google Scholar 

  6. Barbe, P.C., Cecchin, G. and Noristi, L., Adv. Polym. Sci., 1987, 81: 1

    Google Scholar 

  7. Doi, Y., Suzuki, E. and Keii, T., Makromol. Chem., Rapid Commun., 1981, 2: 293.

    Article  CAS  Google Scholar 

  8. Dong, Q., Fu, Z.S., Xu, J.T. and Fan, Z.Q., Eur. Polym. J., 2007, 43: 3442

    Article  CAS  Google Scholar 

  9. Rodriguez, L.A.M. and van Looy, H.M., J. Polym. Sci., Part A-1, 1966, 4: 1971

    Article  CAS  Google Scholar 

  10. Boor, J. Jr., “Ziegler-Natta catalysts and polymerizations”, Academic Press, New York, 1979, p. 403

    Google Scholar 

  11. Kohara, T., Shinoyama, M., Doi, Y. and Keii, T., Makromol. Chem., 1979, 180: 2139

    Article  CAS  Google Scholar 

  12. Doi, Y., Makromol. Chem., Rapid Commun., 1982, 3: 635

    Article  CAS  Google Scholar 

  13. Xu, J.T., Feng, L.X. and Yang, S.L., Macromolecules, 1997, 30: 2539

    Article  CAS  Google Scholar 

  14. Liu, B.P., Nitta, T., Nakatani, H. and Terano, M., Macromol. Chem. Phys., 2002, 203: 2412

    Article  CAS  Google Scholar 

  15. Potapov, A.G., Terskikh, V.V., Zakharov, V.A. and Bukatov, G.D., J. Mol. Catal. A: Chem., 1999, 145: 147

    Article  CAS  Google Scholar 

  16. Shen, X.R., Hu, J., Fu, Z.S., Lou, J.Q. and Fan, Z.Q., Catal. Commun., 2013, 30: 66

    Article  CAS  Google Scholar 

  17. Yu, Y., Tu, S.T., Fu, Z.S., Xu, J.T. and Fan, Z.Q., Shiyou Huagong (Petrochemical Technology), 2011, 40: 673

    CAS  Google Scholar 

  18. Chadwick, J.C., Macromol. Symp., 2001, 173: 21

    Article  CAS  Google Scholar 

  19. Fan, Z.Q., Zhang, L.T., Xia, S.J. and Fu, Z.S., J. Mol. Catal. A: Chem., 2011, 351: 93

    Article  CAS  Google Scholar 

  20. Bukatov, G.D., Zakharov, V.A. and Barabanov, A.A., Kinet. Catal., 2005, 46: 166

    Article  CAS  Google Scholar 

  21. Tangjituabun, K., Kim, S.Y., Hiraoka, H., Taniike, T., Terano, M., Jongsomjit, B. and Praserthdam, P., Chinese. J. Polym. Sci., 2008, 26(5): 547

    Article  CAS  Google Scholar 

  22. Chang, H.F., Ren, S.T., Zheng, T., Dang, X.F., Yang, Y., Zhang, L.Y. and Li, H.Y., Acta Polymerica Sinica (in Chinese), 2013, (2): 199

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-qiang Fan  (范志强).

Additional information

The work was financially supported by the National Natural Science Foundation of China (No. 21074108) and the Major State Basic Research Programs (No. 2011CB606001). Invited paper for the special issue of “Coordination Polymerization of Olefins”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, J., Han, B., Shen, Xr. et al. Probing the roles of diethylaluminum chloride in propylene polymerization with MgCl2-supported ziegler-natta catalysts. Chin J Polym Sci 31, 583–590 (2013). https://doi.org/10.1007/s10118-013-1260-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-013-1260-5

Keywords

Navigation