Skip to main content
Log in

Fractal dimensions of fractional integral of continuous functions

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

In this paper, we mainly explore fractal dimensions of fractional calculus of continuous functions defined on closed intervals. Riemann–Liouville integral of a continuous function f(x) of order v(v > 0) which is written as D −v f(x) has been proved to still be continuous and bounded. Furthermore, upper box dimension of D −vf(x) is no more than 2 and lower box dimension of D −v f(x) is no less than 1. If f(x) is a Lipshciz function, D −v f(x) also is a Lipshciz function. While f(x) is differentiable on [0, 1], D −v f(x) is differentiable on [0, 1] too. With definition of upper box dimension and further calculation, we get upper bound of upper box dimension of Riemann–Liouville fractional integral of any continuous functions including fractal functions. If a continuous function f(x) satisfying Hölder condition, upper box dimension of Riemann–Liouville fractional integral of f(x) seems no more than upper box dimension of f(x). Appeal to auxiliary functions, we have proved an important conclusion that upper box dimension of Riemann–Liouville integral of a continuous function satisfying Hölder condition of order v(v > 0) is strictly less than 2 − v. Riemann–Liouville fractional derivative of certain continuous functions have been discussed elementary. Fractional dimensions of Weyl–Marchaud fractional derivative of certain continuous functions have been estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Falconer, J.: Fractal Geometry: Mathematical Foundations and Applications, John Wiley Sons Inc., New York, 1990

    MATH  Google Scholar 

  2. Jumarie, G.: An approach to defferential geometry of fractional order via modified Riemann–Liouville derivative. Acta Math. Sin., Engl. Ser., 28, 1741–1768 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Liang, Y. S.: The relationship between the Box dimension of the Besicovitch functions and the orders of their fractional calculus. Appl. Math. Comput., 200, 197–207 (2008)

    MathSciNet  Google Scholar 

  4. Liang, Y. S.: Box dimensions of Riemann–Liouville fractional integrals of continuous functions of bounded variation. Nonlinear Anal., 72, 4304–4306 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Liang, Y. S.: Upper Bound estimation of fractal dimensions of fractional integral of continuous functions. Adv. Pure Math., 5, 27–30 (2015)

    Article  Google Scholar 

  6. Liang, Y. S.: Some remarks on continuous functions of unbounded variation. Acta Math. Sin., Chin. Ser., 59, 215–232 (2016)

    Google Scholar 

  7. Liang, Y. S., Su, W. Y.: Connection between the order of fractional calculus and fractional dimensins of a type of fractal functions. Anal. Theory Appl., 23, 354–363 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Liang, Y. S., Su, W. Y.: Von Koch curve and its fractional calculus. Acta Math. Sin., Chin. Ser., 54, 227–240 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Liang, Y. S., Su, W. Y.: Riemann–Liouville fractional calculus of 1-dimensional continuous functions. Sci. China Ser. A, 46, 423–438 (2016)

    Google Scholar 

  10. Liang, Y. S., Yao, K.: Fractal dimensions of Riemann–Liouville fractional calculus of linear fractal interpolation functions. Chin. Ann. Math. Ser. A, 38, 1–8 (2017)

    Google Scholar 

  11. Miller, K. S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley Sons Inc., New York, 1993

    MATH  Google Scholar 

  12. Oldham, K. B., Spanier, J.: The Fractional Calculus, Academic Press, New York, 1974

    MATH  Google Scholar 

  13. Rajković, P. M., Marinković, S. D., Stanković, M. C.: A generalization of the concept of q-fractional integrals. Acta Math. Sin., Engl. Ser., 25, 1635–1646 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ross, B.: The Fractional Calculus and Its Applications, Springer-Verlag, Berlin, Heidelberg, 1975

    Book  Google Scholar 

  15. Ruan, H. J., Su, W. Y., Yao, K.: Box dimension and fractional integral of linear fractal interpolation functions. J. Approx. Theory, 161, 187–197 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tatom, F. B.: The relationship between fractional calculus and fractals. Fractals, 3, 217–229 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wen, Z. Y.: Mathematical Foundations of Fractal Geometry, Science Technology Education Publication House, Shanghai, 2000

    Google Scholar 

  18. Yao, K., Liang, Y. S.: Dimension of graphs of fractional derivatives of self-affine curves. Acta Math. Sin., Chin. Ser., 56, 693–698 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Yao, K., Liang, Y. S., Zhang, F.: On the connection between the order of the fractional derivative and the Hausdorff dimension of a fractal function. Chaos Solitons Fractals, 41, 2538–2545 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yao, K., Su, W. Y., Liang, Y. S.: The upper bound of Box dimension of the Weyl–Marchaud derivative of self-affine curves. Anal. Theory Appl., 26, 222–227 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yao, K., Su, W. Y., Zhou, S. P.: On the fractional calculus of a type of Weierstrass function. Chin. Ann. Math. Ser. B, 25, 711–716 (2004)

    MathSciNet  MATH  Google Scholar 

  22. Yao, K., Su, W. Y., Zhou, S. P.: On the fractional derivatives of a fractal function. Acta Math. Sin., Engl. Ser., 22, 719–722 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Z¨ahle, M.: case V — the local degree of differentiability. Math. Nachr., 185, 297–306 (1997)

    MathSciNet  Google Scholar 

  24. Z¨ahle, M., Ziezold, H.: Fractional derivatives of Weierstrass-type functions. J. Comput. Appl. Math., 76, 265–275 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, Q.: Some remarks on one-dimensional functions and their Riemann–Liouville fractional calculus. Acta Math. Sin., Engl. Ser., 30, 517–524 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, Q., Liang, Y. S.: The Weyl–Marchaud fractional derivative of a type of self-affine functions. Appl. Math. Comput., 218, 8695–8701 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Xie T. F., Zhou, S. P.: Aproximation Theory of Real Functions, Hangzhou University Publication, Hangzhou, 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Shun Liang.

Additional information

Supported by National Natural Science Foundation of China (Grant Nos. 11201230 and 11271182)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y.S., Su, W.Y. Fractal dimensions of fractional integral of continuous functions. Acta. Math. Sin.-English Ser. 32, 1494–1508 (2016). https://doi.org/10.1007/s10114-016-6069-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-016-6069-z

Keywords

MR(2010) Subject Classification

Navigation