Skip to main content
Log in

A microscopic convexity principle for spacetime convex solutions of fully nonlinear parabolic equations

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

We study microscopic spacetime convexity properties of fully nonlinear parabolic partial differential equations. Under certain general structure condition, we establish a constant rank theorem for the spacetime convex solutions of fully nonlinear parabolic equations. At last, we consider the parabolic convexity of solutions to parabolic equations and the convexity of the spacetime second fundamental form of geometric flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Borell, C.: Brownian motion in a convex ring and quasiconcavity. Comm. Math. Phys., 86, 143–147 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Borell, C.: A note on parabolic convexity and heat conduction. Ann. Inst. H. Poincaré Probab. Statist., 32, 387–393 (1996)

    MathSciNet  MATH  Google Scholar 

  3. Borell, C.: Diffusion equations and geometric inequalities. Potential Anal., 12, 49–71 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Li, P., Yau, S. T.: On the parabolic kernel of the Schrödinger operator. Acta Math., 156, 153–201 (1986)

    Article  MathSciNet  Google Scholar 

  5. Hamilton, R.: A matrix Harnack estimate for the heat equation. Comm. Anal. Geom., 1, 113–126 (1993)

    MathSciNet  MATH  Google Scholar 

  6. Hamilton, R.: Harnack estimate for the mean curvature flow. J. Differential Geom., 41, 215–226 (1995)

    MathSciNet  MATH  Google Scholar 

  7. Chow, B., Chu, S.: Space-time formulation of Harnack inequalities for curvature flows of hypersurfaces. J. Geom. Anal., 11, 219–231 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Huisken, G., Sinestrari, C.: Convexity estimates for mean curvature flow and singularities of mean convex surfaces. Acta Math., 183, 45–70 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Caffarelli, L., Friedman, A.: Convexity of solutions of some semilinear elliptic equations. Duke Math. J., 52, 431–455 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Singer, I., Wong, B., Yau, S. T., et al.: An estimate of gap of the first two eigenvalues in the Schrodinger operator. Ann. Sc. Norm. Super. Pisa Cl. Sci., 12, 319–333 (1985)

    MathSciNet  MATH  Google Scholar 

  11. Korevaar, N. J., Lewis, J.: Convex solutions of certain elliptic equations have constant rank Hessians. Arch. Ration. Mech. Anal., 97, 19–32 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bian, B. J., Guan, P. F.: A microscopic convexity principle for nonlinear partial differential equations. Invent. Math., 177, 307–335 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bian, B. J., Guan, P. F.: A structural condition for microscopic convexity principle. Discrete Contin. Dyn. Syst., 28, 789–807 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Caffarelli, L., Guan P. F., Ma, X. N.: A constant rank theorem for solutions of fully nonlinear elliptic equations. Comm. Pure Appl. Math., 60, 1769–1791 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guan, P. F., Lin, C. S., Ma, X. N.: The Christoffel-Minkowski problem II: Weingarten curvature equations. Chin. Ann. Math. Ser. B, 27, 595–614 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guan, P. F., Ma, X. N.: The Christoffel-Minkowski problem I: Convexity of solutions of a Hessian equation. Invent. Math., 151, 553–577 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guan, P. F., Ma, X. N., Zhou, F.: The Christoffel-Minkowski problem III: Existence and convexity of admissible solutions. Comm. Pure Appl. Math., 59, 1352–1376 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Korevaar, N. J.: Convexity of level sets for solutions to elliptic ring problems. Comm. Partial Differential Equations, 15, 541–556 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bian, B. J., Guan, P. F., Ma, X. N., et al.: A microscopic convexity principle for the level sets of solution for nonlinear elliptic partial diffarential equations. Indiana Univ. Math. J., 60, 101–120 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bianchini, C., Longinetti, M., Salani, P.: Quasiconcave solutions to elliptic problems in convex rings. Indiana Univ. Math. J., 58, 1565–1589 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Han, F., Ma, X. N., Wu, D. M.: The existence of k-convex hypersurface with prescribed mean curvature. Calc. Var. Partial Differential Equations, 42, 43–72 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, P., Ma, X. N., Xu, L.: A Brunn-Minkowski inequality for the Hessian eigenvalue in three dimension convex domain. Adv. Math., 225, 1616–1633 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ma, X. N., Xu, L.: The convexity of solution of a class Hessian equation in bounded convex domain in ℝ3. J. Funct. Anal., 255, 1713–1723 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Korevaar, N. J.: Capillary surface convexity above convex domains. Indiana Univ. Math. J., 32, 73–81 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  25. Korevaar, N. J.: Convex solutions to nonlinear elliptic and parabolic boundary value problems. Indiana Univ. Math. J., 32, 603–614 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kennington, A. U.: Power concavity and boundary value problems. Indiana Univ. Math. J., 34, 687–704 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kawohl, B.: A remark on N. Korevaars concavity maximum principle and on the asymptotic uniqueness of solutions to the plasma problem. Math. Methods Appl. Sci., 8, 93–101 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. Alvarez, O., Lasry, J. M., Lions, P. L.: Convex viscosity solutions and state constraints. J. Math. Pures Appl., 76, 265–288 (1997)

    MathSciNet  MATH  Google Scholar 

  29. Kennington, A. U.: Convexity of level curves for an initial value problem. J. Math. Anal. Appl., 133, 324–330 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  30. Porru, G., Serra, S.: Maximum principles for parabolic equations. J. Austral. Math. Soc. Ser. A, 56, 41–52 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hu, B. W., Ma, X. N.: Constant rank theorem of the spacetime convex solution of heat equation. Manu. Math., 138, 89–118 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hu, B. W., Zhang, Y. B.: Spacetime convex solutions to the heat equation on manifolds. Preprint

  33. Lieberman, G.: Second Order Parabolic Differential Equations, World Scientific, Singapore, 1996

    Book  MATH  Google Scholar 

  34. Zhu, X. P.: Lectures on mean curvature flows, American Mathematical Society and International Press, Providence, RI, 2002

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Qiang Chen.

Additional information

The first author is supported by National Natural Science Foundation of China (Grant No. 10871187)

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C.Q., Hu, B.W. A microscopic convexity principle for spacetime convex solutions of fully nonlinear parabolic equations. Acta. Math. Sin.-English Ser. 29, 651–674 (2013). https://doi.org/10.1007/s10114-012-1495-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-012-1495-z

Keywords

MR(2010) Subject Classification

Navigation