Skip to main content

Advertisement

Log in

How treatment, storm events and changed climate affect productivity of temperate forests in SW Germany

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

The impact of heavy storm events, changed climate and treatment on the productivity of temperate forests was investigated for three representative stands in Southwest Germany. The simulation experiment was conducted on a Norway spruce, a mixed and a Douglas-fir stand. We applied a business-as-usual scheme (BAU), further a storm adapted management (SAM) and an early reduction in the tree density (BFB6). Further, we investigated the effects of two different climates, a current and a climate change scenario based on the A1B emissions with a HeadCM3 model chain. Simulations were run by the core functions of a single-tree growth simulator, with an empirical storm risk model, enabling to predict single-tree probabilities of being damaged. Further growing conditions were changed by modelling site index as a function of climate. The simulations were run over a period from 2010 to 2500, and we investigated standing and harvested volume and net present value (NPV). Results show that storm frequency has a major impact on all output variables, followed by treatment. For the Douglas-fir stand, treatment is even more important for mean harvested volume, while it does not play a major role in the mixed stand. Compared with storm frequency and treatment, change in precipitation and temperature is less influential. There is a clear negative climate change effect on harvest levels for the spruce and mixed stand, while Douglas fir shows a distinct positive reaction. BFB6 shows the highest harvested and standing volume for both coniferous stands, but lower NPVs due to cutting of premature timber. BAU displays the best performance for NPV, while SAM yields the worst results for harvested and mean standing timber as well as for NPV. Assumptions and limitations of the study are discussed mainly referring to the long simulation period, and it is concluded that before implementing extreme strategies—like SAM—with effects similar to those of the disturbances, a forward-looking adaptive management should be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albert M, Schmidt M (2010) Climate-sensitive modelling of site-productivity relationships for Norway spruce (Picea abies (L.) Karst.) and common beech (Fagus sylvatica L.). For Ecol Manag 259:739–749. doi:10.1016/j.foreco.2009.04.039

    Article  Google Scholar 

  • Albrecht A, Kohnle U, Nagel J (2009) Parametrisierung und Evaluierung von BWinPro für Baden-Württemberg anhand von waldwachstumskundlichen Versuchsflächendaten. Deutscher Verband Forstlicher Forschungsanstalten, Sektion Ertragskunde, Conference proceedings 2009 (in German). http://www.nw-fva.de/~nagel/SektionErtragskunde/band2010/Tag2010_02.pdf

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J-H, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684. doi:10.1016/j.foreco.2009.09.001

    Article  Google Scholar 

  • Bolte A, Ammer C, Löf M, Madsen P, Nabuurs G-J, Schall P, Spathelf P, Rock J (2009) Adaptive forest management in central Europe: climate change impacts, strategies and integrative concept. Scand J For Res 24:473–482. doi:10.1080/02827580903418224

    Article  Google Scholar 

  • Chang SJ (1998) A generalized Faustmann model for the determination of optimal harvest age. Can J For Res 28:652–659. doi:10.1139/x98-017

    Article  Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogé J, Allard VA, Buchmann MN, Bernhofer Carrara A, Chevallier F, De Noblet N, Friend A, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival J, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana J, Sanz M, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533. doi:10.1038/nature03972

    Article  CAS  Google Scholar 

  • Collins M, Booth B, Harris G, Murphy J, Sexton D (2006) Towards quantifying uncertainty in transient climate change. Clim Dyn 27:127–147. doi:10.1007/s00382-006-0121-0

    Article  Google Scholar 

  • Dieter M (2001) Land expectation values for spruce and beech calculated with Monte Carlo modelling techniques. For Policy Econ 2:157–166. doi:10.1016/S1389-9341(01)00045-4

    Article  Google Scholar 

  • Faustmann M (1849) Calculation of the value which forest land and immature stands possess for forestry. J For Econ 1(1995):7–44 (Reprinted from Commonwealth Forestry Institute of Oxford, Institute Paper 42, 1968)

    Google Scholar 

  • Gardiner B, Blennow K, Carnus J-M, Fleischer P, Ingemarson F, Landmann G, Lindner M, Marzano M, Nicoll B, Orazio C, Peyron JL, Reviron M-P, Schelhaas M-J, Schuck A, Spielmann M, Usbeck T (2011) Destructive storms in European forests—past and forthcoming impacts. European Forest Institute, Atlantic European Regional Office—EFIATLANTIC. Final Report to European Commission, DG Environment

  • Hanewinkel M, Cullmann D, Schelhaas M-J, Nabuurs G-J, Zimmermann NE (2013) Climate change may cause severe loss in economic value of European forestland. Nat Clim Change 3:204–207. doi:10.1038/nclimate1687

    Google Scholar 

  • Hanewinkel M, Cullmann DA, Michiels H-G, Kändler G (2014) Converting probabilistic tree species range shift projections into meaningful classes for management. J Environ Manag 134:153–165. doi:10.1016/j.jenvman.2014.01.010

    Article  Google Scholar 

  • Hijmans R, Cameron SE, Parra J, Jones P, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi:10.1002/joc.1276

    Article  Google Scholar 

  • Jönsson AM, Harding S, Bärring L, Ravn HP (2007) Impact of climate change on the population dynamics of Ips typographus in southern Sweden. Agric For Meteorol 146:70–81. doi:10.1016/j.agrformet.2007.05.006

    Article  Google Scholar 

  • Jönsson AM, Appelberg G, Harding S, Bärring L (2009) Spatiotemporal impact of climate change on the activity and voltinism of the spruce bark beetle, Ips typographus. Glob Change Biol 15:486–499. doi:10.1111/j.1365-2486.2008.01742.x

    Article  Google Scholar 

  • Kellomäki S, Peltola H, Nuutinen T, Korhonen KT, Strandman H (2008) Sensitivity of managed boreal forests in Finland to climate change, with implications for adaptive management. Phil Trans R Soc Lond B 363:2339–2349. doi:10.1098/rstb.2007.2204

    Article  Google Scholar 

  • Knoke T, Ammer C, Stimm B, Mosandl R (2008) Admixing broadleaved to coniferous tree species: a review on yield, ecological stability and economics. Eur J For Res 127:89–101. doi:10.1007/s10342-007-0186-2

    Article  Google Scholar 

  • Knutti R, Sedlacek J (2013) Robustness and uncertainties in the new CMIP5 climate model projections. Nat Clim Change 3:369–373. doi:10.1038/nclimate1716

    Article  Google Scholar 

  • Köhl M, Hildebrandt R, Olschowsky K, Köhler R, Rötzer T, Mette T, Pretzsch H, Köthke M, Dieter M, Mengistu A, Makeschin F, Kentner B (2010) Combating the effects of climatic change on forests by mitigation strategies. Carbon Balance Manag 5:8. doi:10.1186/1750-0680-5-8

    Article  Google Scholar 

  • Mitchell S, Hailemariam T, Kulis Y (2001) Empirical modeling of cutblock edge windthrow risk on Vancouver Island, Canada, using stand level information. For Ecol Manag 154:117–130. doi:10.1016/S0378-1127(00)00620-4

    Article  Google Scholar 

  • Nabuurs GJ, Lindner M, Verkerk PJ, Gunia K, Deda P, Michalak R, Grassi G (2013) First signs of carbon sink saturation in European forest biomass. Nat Clim Change 3:792–796. doi:10.1038/nclimate1853

    Article  CAS  Google Scholar 

  • Nagel J (1997) BWIN program for stand analysis and prognosis. User’s manual for version 3.0, Niedersächsische Forstliche Versuchsanstalt Göttingen, 44 pp (German)

  • Nothdurft A, Wolf T, Ringeler A, Böhner J, Saborowski J (2012) Spatio-temporal prediction of site index based on forest inventories and climate change scenarios. For Ecol Manag 279:97–111. doi:10.1016/j.foreco.2012.05.018

    Article  Google Scholar 

  • Odenthal-Kahabka J (2005) Fünf Jahre nach “Lothar” - Ergebnisse der Sturmschadensbewältigung im Kleinprivatwald (5–200 ha) Baden-Württemberg, Teil I. Der Waldwirt 32:13–16 (German)

    Google Scholar 

  • R Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Raunikar R, Buongiorno J, Turner J, Zhu S (2010) Global outlook for wood and forests with the bioenergy demand implied by scenarios of the Intergovernmental Panel on Climate Change. For Policy Econ 12:48–56. doi:10.1016/j.forpol.2009.09.013

    Article  Google Scholar 

  • Reed WJ (1984) The effects of the risk of fire on the optimal rotation of a forest. J Environ Econ Manag 11:180–190. doi:10.1016/0095-0696(84)90016-0

    Article  Google Scholar 

  • Reyer C, Lasch-Born P, Suckow F, Gutsch M, Murawski A, Pilz T (2014) Projections of regional changes in forest net primary productivity for different tree species in Europe driven by climate change and carbon dioxide. Ann For Sci 71:211–225. doi:10.1007/s13595-013-0306-8

    Article  Google Scholar 

  • Schelhaas MJ, Nabuurs G-J, Schuck A (2003) Natural disturbances in the European forests in the 19th and 20th centuries. Glob Change Biol 9:1620–1633. doi:10.1046/j.1365-2486.2003.00684.x

    Article  Google Scholar 

  • Schmidt M, Hanewinkel M, Kändler G, Kublin E, Kohnle U (2010) An inventory-based approach for modeling single tree storm damage—experiences with the winter storm 1999 in southwestern Germany. Can J For Res 40:1636–1652. doi:10.1139/X10-099

    Article  Google Scholar 

  • Seidl R, Blennow K (2012) Pervasive growth reduction in Norway spruce forests following wind disturbance. PLoS ONE 7:e33301. doi:10.1371/journal.pone.0033301

    Article  CAS  Google Scholar 

  • Seidl R, Rammer W, Jäger D, Lexer MJ (2008) Impact of bark beetle (Ips typographus L.) disturbance on timber production and carbon sequestration in different management strategies under climate change. For Ecol Manag 256:209–220. doi:10.1016/j.foreco.2008.04.002

    Article  Google Scholar 

  • Seidl R, Schelhaas M-J, Lexer MJ (2011) Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob Change Biol 17:2842–2852. doi:10.1111/j.1365-2486.2011.02452.x

    Article  Google Scholar 

  • Sohngen B, Alig R, Solberg B (2007) The forest sector, climate change, and the global carbon cycle. The Ohio State University, Department of Agricultural, Environmental and Development Economics

  • Stadelmann G, Bugmann H, Wermelinger B, Bigler C (2014) Spatial interactions between storm damage and subsequent infestations by the European spruce bark beetle. For Ecol Manage 318:167–174. doi:10.1016/j.foreco.2014.01.022

    Article  Google Scholar 

  • Temperli C, Bugmann H, Elkin C (2012) Adaptive management for competing forest goods and services under climate change. Ecol Appl 22:2065–2077. doi:10.1890/12-0210.1

    Article  Google Scholar 

  • Temperli C, Bugmann H, Elkin C (2013a) Cross-scale interactions among bark beetles, climate change, and wind disturbances: a landscape modeling approach. Ecol Monogr 83:383–402. doi:10.1890/12-1503.1

    Article  Google Scholar 

  • Temperli C, Zell J, Bugmann H, Elkin C (2013b) Sensitivity of ecosystem goods and services projections of a forest landscape model to initialization data. Landsc Ecol 28:1337–1352. doi:10.1007/s10980-013-9882-0

    Article  Google Scholar 

  • Wood SN (2006) Generalized additive models: an introduction with R. Chapman & Hall/CRC, Boca Raton, p 391

    Google Scholar 

  • Yousefpour R, Temperli C, Bugmann H, Elkin C, Hanewinkel M, Meilby H, Bredahl Jacobsen J, Thorsen BJ (2013) Updating beliefs and combining evidence in adaptive forest management under climate change: a case study of Norway spruce (Picea abies L. Karst) in the Black Forest, Germany. J Environ Manag 122:56–64. doi:10.1016/j.jenvman.2013.03.004

    Article  Google Scholar 

  • Zell J (2008) Methoden für die Ermittlung, Modellierung und Prognose der Kohlenstoffspeicherung in Wäldern auf Grundlage permanenter Grossrauminventuren. PhD-thesis, University of Freiburg, Freiburg (German). http://www.freidok.uni-freiburg.de/volltexte/5400/pdf/zell_diss.pdf

Download references

Acknowledgments

This study was funded by MOTIVE project (models for adaptive forest management, Grant No. 226544). The project is supported by the European Commission under the Environment (including climate change) Theme of the 7th Framework Programme for Research and Technological Development. We also want to thank the two anonymous referees for their helpful and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Zell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zell, J., Hanewinkel, M. How treatment, storm events and changed climate affect productivity of temperate forests in SW Germany. Reg Environ Change 15, 1531–1542 (2015). https://doi.org/10.1007/s10113-015-0777-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-015-0777-2

Keywords

Navigation